Cargando…
Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses
Multiple modern applications of electronics call for inexpensive chips that can perform complex operations on natural data with limited energy. A vision for accomplishing this is implementing hardware neural networks, which fuse computation and memory, with low cost organic electronics. A challenge,...
Autores principales: | Lin, Yu-Pu, Bennett, Christopher H., Cabaret, Théo, Vodenicarevic, Damir, Chabi, Djaafar, Querlioz, Damien, Jousselme, Bruno, Derycke, Vincent, Klein, Jacques-Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013285/ https://www.ncbi.nlm.nih.gov/pubmed/27601088 http://dx.doi.org/10.1038/srep31932 |
Ejemplares similares
-
A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network
por: Vodenicarevic, Damir, et al.
Publicado: (2017) -
Neuromorphic computing with multi-memristive synapses
por: Boybat, Irem, et al.
Publicado: (2018) -
Memristive Artificial Synapses for Neuromorphic Computing
por: Huang, Wen, et al.
Publicado: (2021) -
Palimpsest memories stored in memristive synapses
por: Giotis, Christos, et al.
Publicado: (2022) -
Interplay of multiple synaptic plasticity features in filamentary memristive devices for neuromorphic computing
por: La Barbera, Selina, et al.
Publicado: (2016)