Cargando…
Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition
Deep convolutional neural networks (DCNNs) have attracted much attention recently, and have shown to be able to recognize thousands of object categories in natural image databases. Their architecture is somewhat similar to that of the human visual system: both use restricted receptive fields, and a...
Autores principales: | Kheradpisheh, Saeed Reza, Ghodrati, Masoud, Ganjtabesh, Mohammad, Masquelier, Timothée |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013454/ https://www.ncbi.nlm.nih.gov/pubmed/27601096 http://dx.doi.org/10.1038/srep32672 |
Ejemplares similares
-
Humans and Deep Networks Largely Agree on Which Kinds of Variation Make Object Recognition Harder
por: Kheradpisheh, Saeed R., et al.
Publicado: (2016) -
Object Categorization in Finer Levels Relies More on Higher Spatial Frequencies and Takes Longer
por: Ashtiani, Matin N., et al.
Publicado: (2017) -
Invariant object recognition is a personalized selection of invariant features in humans, not simply explained by hierarchical feed-forward vision models
por: Karimi-Rouzbahani, Hamid, et al.
Publicado: (2017) -
Optimal Localist and Distributed Coding of Spatiotemporal Spike Patterns Through STDP and Coincidence Detection
por: Masquelier, Timothée, et al.
Publicado: (2018) -
An Evidence-Based Combining Classifier for Brain Signal Analysis
por: Kheradpisheh, Saeed Reza, et al.
Publicado: (2014)