Cargando…
Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia
Many metabolic liver disorders are refractory to drug therapy and require orthotopic liver transplantation. Here we demonstrate a new strategy, which we call metabolic pathway reprogramming, to treat hereditary tyrosinaemia type I in mice; rather than edit the disease-causing gene, we delete a gene...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013601/ https://www.ncbi.nlm.nih.gov/pubmed/27572891 http://dx.doi.org/10.1038/ncomms12642 |
_version_ | 1782452198755532800 |
---|---|
author | Pankowicz, Francis P. Barzi, Mercedes Legras, Xavier Hubert, Leroy Mi, Tian Tomolonis, Julie A. Ravishankar, Milan Sun, Qin Yang, Diane Borowiak, Malgorzata Sumazin, Pavel Elsea, Sarah H. Bissig-Choisat, Beatrice Bissig, Karl-Dimiter |
author_facet | Pankowicz, Francis P. Barzi, Mercedes Legras, Xavier Hubert, Leroy Mi, Tian Tomolonis, Julie A. Ravishankar, Milan Sun, Qin Yang, Diane Borowiak, Malgorzata Sumazin, Pavel Elsea, Sarah H. Bissig-Choisat, Beatrice Bissig, Karl-Dimiter |
author_sort | Pankowicz, Francis P. |
collection | PubMed |
description | Many metabolic liver disorders are refractory to drug therapy and require orthotopic liver transplantation. Here we demonstrate a new strategy, which we call metabolic pathway reprogramming, to treat hereditary tyrosinaemia type I in mice; rather than edit the disease-causing gene, we delete a gene in a disease-associated pathway to render the phenotype benign. Using CRISPR/Cas9 in vivo, we convert hepatocytes from tyrosinaemia type I into the benign tyrosinaemia type III by deleting Hpd (hydroxyphenylpyruvate dioxigenase). Edited hepatocytes (Fah(−/−)/Hpd(−/−)) display a growth advantage over non-edited hepatocytes (Fah(−/−)/Hpd(+/+)) and, in some mice, almost completely replace them within 8 weeks. Hpd excision successfully reroutes tyrosine catabolism, leaving treated mice healthy and asymptomatic. Metabolic pathway reprogramming sidesteps potential difficulties associated with editing a critical disease-causing gene and can be explored as an option for treating other diseases. |
format | Online Article Text |
id | pubmed-5013601 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-50136012016-09-20 Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia Pankowicz, Francis P. Barzi, Mercedes Legras, Xavier Hubert, Leroy Mi, Tian Tomolonis, Julie A. Ravishankar, Milan Sun, Qin Yang, Diane Borowiak, Malgorzata Sumazin, Pavel Elsea, Sarah H. Bissig-Choisat, Beatrice Bissig, Karl-Dimiter Nat Commun Article Many metabolic liver disorders are refractory to drug therapy and require orthotopic liver transplantation. Here we demonstrate a new strategy, which we call metabolic pathway reprogramming, to treat hereditary tyrosinaemia type I in mice; rather than edit the disease-causing gene, we delete a gene in a disease-associated pathway to render the phenotype benign. Using CRISPR/Cas9 in vivo, we convert hepatocytes from tyrosinaemia type I into the benign tyrosinaemia type III by deleting Hpd (hydroxyphenylpyruvate dioxigenase). Edited hepatocytes (Fah(−/−)/Hpd(−/−)) display a growth advantage over non-edited hepatocytes (Fah(−/−)/Hpd(+/+)) and, in some mice, almost completely replace them within 8 weeks. Hpd excision successfully reroutes tyrosine catabolism, leaving treated mice healthy and asymptomatic. Metabolic pathway reprogramming sidesteps potential difficulties associated with editing a critical disease-causing gene and can be explored as an option for treating other diseases. Nature Publishing Group 2016-08-30 /pmc/articles/PMC5013601/ /pubmed/27572891 http://dx.doi.org/10.1038/ncomms12642 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Pankowicz, Francis P. Barzi, Mercedes Legras, Xavier Hubert, Leroy Mi, Tian Tomolonis, Julie A. Ravishankar, Milan Sun, Qin Yang, Diane Borowiak, Malgorzata Sumazin, Pavel Elsea, Sarah H. Bissig-Choisat, Beatrice Bissig, Karl-Dimiter Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia |
title | Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia |
title_full | Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia |
title_fullStr | Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia |
title_full_unstemmed | Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia |
title_short | Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia |
title_sort | reprogramming metabolic pathways in vivo with crispr/cas9 genome editing to treat hereditary tyrosinaemia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013601/ https://www.ncbi.nlm.nih.gov/pubmed/27572891 http://dx.doi.org/10.1038/ncomms12642 |
work_keys_str_mv | AT pankowiczfrancisp reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia AT barzimercedes reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia AT legrasxavier reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia AT hubertleroy reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia AT mitian reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia AT tomolonisjuliea reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia AT ravishankarmilan reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia AT sunqin reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia AT yangdiane reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia AT borowiakmalgorzata reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia AT sumazinpavel reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia AT elseasarahh reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia AT bissigchoisatbeatrice reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia AT bissigkarldimiter reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia |