Cargando…

Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia

Many metabolic liver disorders are refractory to drug therapy and require orthotopic liver transplantation. Here we demonstrate a new strategy, which we call metabolic pathway reprogramming, to treat hereditary tyrosinaemia type I in mice; rather than edit the disease-causing gene, we delete a gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Pankowicz, Francis P., Barzi, Mercedes, Legras, Xavier, Hubert, Leroy, Mi, Tian, Tomolonis, Julie A., Ravishankar, Milan, Sun, Qin, Yang, Diane, Borowiak, Malgorzata, Sumazin, Pavel, Elsea, Sarah H., Bissig-Choisat, Beatrice, Bissig, Karl-Dimiter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013601/
https://www.ncbi.nlm.nih.gov/pubmed/27572891
http://dx.doi.org/10.1038/ncomms12642
_version_ 1782452198755532800
author Pankowicz, Francis P.
Barzi, Mercedes
Legras, Xavier
Hubert, Leroy
Mi, Tian
Tomolonis, Julie A.
Ravishankar, Milan
Sun, Qin
Yang, Diane
Borowiak, Malgorzata
Sumazin, Pavel
Elsea, Sarah H.
Bissig-Choisat, Beatrice
Bissig, Karl-Dimiter
author_facet Pankowicz, Francis P.
Barzi, Mercedes
Legras, Xavier
Hubert, Leroy
Mi, Tian
Tomolonis, Julie A.
Ravishankar, Milan
Sun, Qin
Yang, Diane
Borowiak, Malgorzata
Sumazin, Pavel
Elsea, Sarah H.
Bissig-Choisat, Beatrice
Bissig, Karl-Dimiter
author_sort Pankowicz, Francis P.
collection PubMed
description Many metabolic liver disorders are refractory to drug therapy and require orthotopic liver transplantation. Here we demonstrate a new strategy, which we call metabolic pathway reprogramming, to treat hereditary tyrosinaemia type I in mice; rather than edit the disease-causing gene, we delete a gene in a disease-associated pathway to render the phenotype benign. Using CRISPR/Cas9 in vivo, we convert hepatocytes from tyrosinaemia type I into the benign tyrosinaemia type III by deleting Hpd (hydroxyphenylpyruvate dioxigenase). Edited hepatocytes (Fah(−/−)/Hpd(−/−)) display a growth advantage over non-edited hepatocytes (Fah(−/−)/Hpd(+/+)) and, in some mice, almost completely replace them within 8 weeks. Hpd excision successfully reroutes tyrosine catabolism, leaving treated mice healthy and asymptomatic. Metabolic pathway reprogramming sidesteps potential difficulties associated with editing a critical disease-causing gene and can be explored as an option for treating other diseases.
format Online
Article
Text
id pubmed-5013601
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-50136012016-09-20 Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia Pankowicz, Francis P. Barzi, Mercedes Legras, Xavier Hubert, Leroy Mi, Tian Tomolonis, Julie A. Ravishankar, Milan Sun, Qin Yang, Diane Borowiak, Malgorzata Sumazin, Pavel Elsea, Sarah H. Bissig-Choisat, Beatrice Bissig, Karl-Dimiter Nat Commun Article Many metabolic liver disorders are refractory to drug therapy and require orthotopic liver transplantation. Here we demonstrate a new strategy, which we call metabolic pathway reprogramming, to treat hereditary tyrosinaemia type I in mice; rather than edit the disease-causing gene, we delete a gene in a disease-associated pathway to render the phenotype benign. Using CRISPR/Cas9 in vivo, we convert hepatocytes from tyrosinaemia type I into the benign tyrosinaemia type III by deleting Hpd (hydroxyphenylpyruvate dioxigenase). Edited hepatocytes (Fah(−/−)/Hpd(−/−)) display a growth advantage over non-edited hepatocytes (Fah(−/−)/Hpd(+/+)) and, in some mice, almost completely replace them within 8 weeks. Hpd excision successfully reroutes tyrosine catabolism, leaving treated mice healthy and asymptomatic. Metabolic pathway reprogramming sidesteps potential difficulties associated with editing a critical disease-causing gene and can be explored as an option for treating other diseases. Nature Publishing Group 2016-08-30 /pmc/articles/PMC5013601/ /pubmed/27572891 http://dx.doi.org/10.1038/ncomms12642 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Pankowicz, Francis P.
Barzi, Mercedes
Legras, Xavier
Hubert, Leroy
Mi, Tian
Tomolonis, Julie A.
Ravishankar, Milan
Sun, Qin
Yang, Diane
Borowiak, Malgorzata
Sumazin, Pavel
Elsea, Sarah H.
Bissig-Choisat, Beatrice
Bissig, Karl-Dimiter
Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia
title Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia
title_full Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia
title_fullStr Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia
title_full_unstemmed Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia
title_short Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia
title_sort reprogramming metabolic pathways in vivo with crispr/cas9 genome editing to treat hereditary tyrosinaemia
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013601/
https://www.ncbi.nlm.nih.gov/pubmed/27572891
http://dx.doi.org/10.1038/ncomms12642
work_keys_str_mv AT pankowiczfrancisp reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia
AT barzimercedes reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia
AT legrasxavier reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia
AT hubertleroy reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia
AT mitian reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia
AT tomolonisjuliea reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia
AT ravishankarmilan reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia
AT sunqin reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia
AT yangdiane reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia
AT borowiakmalgorzata reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia
AT sumazinpavel reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia
AT elseasarahh reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia
AT bissigchoisatbeatrice reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia
AT bissigkarldimiter reprogrammingmetabolicpathwaysinvivowithcrisprcas9genomeeditingtotreathereditarytyrosinaemia