Cargando…
densityCut: an efficient and versatile topological approach for automatic clustering of biological data
Motivation: Many biological data processing problems can be formalized as clustering problems to partition data points into sensible and biologically interpretable groups. Results: This article introduces densityCut, a novel density-based clustering algorithm, which is both time- and space-efficient...
Autores principales: | Ding, Jiarui, Shah, Sohrab, Condon, Anne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013902/ https://www.ncbi.nlm.nih.gov/pubmed/27153661 http://dx.doi.org/10.1093/bioinformatics/btw227 |
Ejemplares similares
-
Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
por: Ding, Jiarui, et al.
Publicado: (2018) -
Automatic cell topology
por: Wells, William A.
Publicado: (2006) -
Automatic Clustering of Flow Cytometry Data with Density-Based Merging
por: Walther, Guenther, et al.
Publicado: (2009) -
A versatile automatic gas-sampling
system
por: Reed, H. L., et al.
Publicado: (1983) -
Automatic Clustering and Classification of Coffee Leaf Diseases Based on an Extended Kernel Density Estimation Approach
por: Hasan, Reem Ibrahim, et al.
Publicado: (2023)