Cargando…
A Species-Level Phylogeny of Extant Snakes with Description of a New Colubrid Subfamily and Genus
BACKGROUND: With over 3,500 species encompassing a diverse range of morphologies and ecologies, snakes make up 36% of squamate diversity. Despite several attempts at estimating higher-level snake relationships and numerous assessments of generic- or species-level phylogenies, a large-scale species-l...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5014348/ https://www.ncbi.nlm.nih.gov/pubmed/27603205 http://dx.doi.org/10.1371/journal.pone.0161070 |
Sumario: | BACKGROUND: With over 3,500 species encompassing a diverse range of morphologies and ecologies, snakes make up 36% of squamate diversity. Despite several attempts at estimating higher-level snake relationships and numerous assessments of generic- or species-level phylogenies, a large-scale species-level phylogeny solely focusing on snakes has not been completed. Here, we provide the largest-yet estimate of the snake tree of life using maximum likelihood on a supermatrix of 1745 taxa (1652 snake species + 7 outgroup taxa) and 9,523 base pairs from 10 loci (5 nuclear, 5 mitochondrial), including previously unsequenced genera (2) and species (61). RESULTS: Increased taxon sampling resulted in a phylogeny with a new higher-level topology and corroborate many lower-level relationships, strengthened by high nodal support values (> 85%) down to the species level (73.69% of nodes). Although the majority of families and subfamilies were strongly supported as monophyletic with > 88% support values, some families and numerous genera were paraphyletic, primarily due to limited taxon and loci sampling leading to a sparse supermatrix and minimal sequence overlap between some closely-related taxa. With all rogue taxa and incertae sedis species eliminated, higher-level relationships and support values remained relatively unchanged, except in five problematic clades. CONCLUSION: Our analyses resulted in new topologies at higher- and lower-levels; resolved several previous topological issues; established novel paraphyletic affiliations; designated a new subfamily, Ahaetuliinae, for the genera Ahaetulla, Chrysopelea, Dendrelaphis, and Dryophiops; and appointed Hemerophis (Coluber) zebrinus to a new genus, Mopanveldophis. Although we provide insight into some distinguished problematic nodes, at the deeper phylogenetic scale, resolution of these nodes may require sampling of more slowly-evolving nuclear genes. |
---|