Cargando…

Mercury-Pollution Induction of Intracellular Lipid Accumulation and Lysosomal Compartment Amplification in the Benthic Foraminifer Ammonia parkinsoniana

Heavy metals such as mercury (Hg) pose a significant health hazard through bioaccumulation and biomagnification. By penetrating cell membranes, heavy metal ions may lead to pathological conditions. Here we examined the responses of Ammonia parkinsoniana, a benthic foraminiferan, to different concent...

Descripción completa

Detalles Bibliográficos
Autores principales: Frontalini, Fabrizio, Curzi, Davide, Cesarini, Erica, Canonico, Barbara, Giordano, Francesco M., De Matteis, Rita, Bernhard, Joan M., Pieretti, Nadia, Gu, Baohua, Eskelsen, Jeremy R., Jubb, Aaron M., Zhao, Linduo, Pierce, Eric M., Gobbi, Pietro, Papa, Stefano, Coccioni, Rodolfo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5014445/
https://www.ncbi.nlm.nih.gov/pubmed/27603511
http://dx.doi.org/10.1371/journal.pone.0162401
Descripción
Sumario:Heavy metals such as mercury (Hg) pose a significant health hazard through bioaccumulation and biomagnification. By penetrating cell membranes, heavy metal ions may lead to pathological conditions. Here we examined the responses of Ammonia parkinsoniana, a benthic foraminiferan, to different concentrations of Hg in the artificial sea water. Confocal images of untreated and treated specimens using fluorescent probes (Nile Red and Acridine Orange) provided an opportunity for visualizing the intracellular lipid accumulation and acidic compartment regulation. With increased Hg over time, we observed an increased number of lipid droplets, which may have acted as a detoxifying organelle where Hg is sequestered and biologically inactivated. Further, Hg seems to promote the proliferation of lysosomes both in terms of number and dimension that, at the highest level of Hg, resulted in cell death. We report, for the first time, the presence of Hg within the foraminiferal cell: at the basal part of pores, in the organic linings of the foramen/septa, and as cytoplasmic accumulations.