Cargando…
Antimicrobial activity of PVP coated silver nanoparticles synthesized by Lysinibacillus varians
Emergence of resistant microbes to conventional antibiotics and increased emphasis on health-care costs has raised the concern for the development of new effective antimicrobial reagents. Silver nanoparticles being an excellent broad-spectrum antibacterial agent could be considered as a suitable alt...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5014767/ https://www.ncbi.nlm.nih.gov/pubmed/28330268 http://dx.doi.org/10.1007/s13205-016-0514-7 |
Sumario: | Emergence of resistant microbes to conventional antibiotics and increased emphasis on health-care costs has raised the concern for the development of new effective antimicrobial reagents. Silver nanoparticles being an excellent broad-spectrum antibacterial agent could be considered as a suitable alternative for existing antibiotic. This study demonstrates the extra-cellular synthesis of stable silver nanoparticles using supernatant of Lysinibacillus varians. The synthesized silver nanoparticles were characterized by using UV–visible spectrum analysis, X-ray diffraction, Transmission electron microscopy (TEM) and FT-IR analysis. The synthesized silver nanoparticles showed a peak around 420 nm. TEM analysis revealed that the size of silver nanoparticles was in the range of 10–20 nm. Silver nanoparticles carry a charge of −39.86 mV, which confirmed the stability of silver nanoparticles. The biologically synthesized silver nanoparticles showed antimicrobial activity against Gram-positive, Gram-negative bacteria and fungi. Therefore, the current study reveals an efficient and eco-friendly synthesis of silver nanoparticles by L. varians with potent antimicrobial activity. |
---|