Cargando…
Structural Plasticity Denoises Responses and Improves Learning Speed
Despite an abundance of computational models for learning of synaptic weights, there has been relatively little research on structural plasticity, i.e., the creation and elimination of synapses. Especially, it is not clear how structural plasticity works in concert with spike-timing-dependent plasti...
Autores principales: | Spiess, Robin, George, Richard, Cook, Matthew, Diehl, Peter U. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5014863/ https://www.ncbi.nlm.nih.gov/pubmed/27660610 http://dx.doi.org/10.3389/fncom.2016.00093 |
Ejemplares similares
-
Unsupervised learning of digit recognition using spike-timing-dependent plasticity
por: Diehl, Peter U., et al.
Publicado: (2015) -
Modeling the interplay between structural plasticity and spike-timing-dependent plasticity
por: George, Richard M, et al.
Publicado: (2015) -
Denoising High-Field Multi-Dimensional MRI With Local Complex PCA
por: Bazin, Pierre-Louis, et al.
Publicado: (2019) -
Signal denoising through topographic modularity of neural circuits
por: Zajzon, Barna, et al.
Publicado: (2023) -
SPIDEN: deep Spiking Neural Networks for efficient image denoising
por: Castagnetti, Andrea, et al.
Publicado: (2023)