Cargando…

Magnetic resonance imaging reveals functional anatomy and biomechanics of a living dragon tree

Magnetic resonance imaging (MRI) was used to gain in vivo insight into load-induced displacements of inner plant tissues making a non-invasive and non-destructive stress and strain analysis possible. The central aim of this study was the identification of a possible load-adapted orientation of the v...

Descripción completa

Detalles Bibliográficos
Autores principales: Hesse, Linnea, Masselter, Tom, Leupold, Jochen, Spengler, Nils, Speck, Thomas, Korvink, Jan Gerrit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5015020/
https://www.ncbi.nlm.nih.gov/pubmed/27604526
http://dx.doi.org/10.1038/srep32685
Descripción
Sumario:Magnetic resonance imaging (MRI) was used to gain in vivo insight into load-induced displacements of inner plant tissues making a non-invasive and non-destructive stress and strain analysis possible. The central aim of this study was the identification of a possible load-adapted orientation of the vascular bundles and their fibre caps as the mechanically relevant tissue in branch-stem-attachments of Dracaena marginata. The complex three-dimensional deformations that occur during mechanical loading can be analysed on the basis of quasi-three-dimensional data representations of the outer surface, the inner tissue arrangement (meristem and vascular system), and the course of single vascular bundles within the branch-stem-attachment region. In addition, deformations of vascular bundles could be quantified manually and by using digital image correlation software. This combination of qualitative and quantitative stress and strain analysis leads to an improved understanding of the functional morphology and biomechanics of D. marginata, a plant that is used as a model organism for optimizing branched technical fibre-reinforced lightweight trusses in order to increase their load bearing capacity.