Cargando…
Humans and Deep Networks Largely Agree on Which Kinds of Variation Make Object Recognition Harder
View-invariant object recognition is a challenging problem that has attracted much attention among the psychology, neuroscience, and computer vision communities. Humans are notoriously good at it, even if some variations are presumably more difficult to handle than others (e.g., 3D rotations). Human...
Autores principales: | Kheradpisheh, Saeed R., Ghodrati, Masoud, Ganjtabesh, Mohammad, Masquelier, Timothée |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5015476/ https://www.ncbi.nlm.nih.gov/pubmed/27642281 http://dx.doi.org/10.3389/fncom.2016.00092 |
Ejemplares similares
-
Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition
por: Kheradpisheh, Saeed Reza, et al.
Publicado: (2016) -
Object Categorization in Finer Levels Relies More on Higher Spatial Frequencies and Takes Longer
por: Ashtiani, Matin N., et al.
Publicado: (2017) -
Optimal Localist and Distributed Coding of Spatiotemporal Spike Patterns Through STDP and Coincidence Detection
por: Masquelier, Timothée, et al.
Publicado: (2018) -
What Makes Change Harder or Easier
por: Spiegel, Markus
Publicado: (2017) -
An Evidence-Based Combining Classifier for Brain Signal Analysis
por: Kheradpisheh, Saeed Reza, et al.
Publicado: (2014)