Cargando…

Functional annotation of non-coding sequence variants

Identifying functionally relevant variants against the background of ubiquitous genetic variation is a major challenge in human genetics. For variants that fall in protein-coding regions our understanding of the genetic code and splicing allow us to identify likely candidates, but interpreting varia...

Descripción completa

Detalles Bibliográficos
Autores principales: Ritchie, Graham R. S., Dunham, Ian, Zeggini, Eleftheria, Flicek, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5015703/
https://www.ncbi.nlm.nih.gov/pubmed/24487584
http://dx.doi.org/10.1038/nmeth.2832
_version_ 1782452482462449664
author Ritchie, Graham R. S.
Dunham, Ian
Zeggini, Eleftheria
Flicek, Paul
author_facet Ritchie, Graham R. S.
Dunham, Ian
Zeggini, Eleftheria
Flicek, Paul
author_sort Ritchie, Graham R. S.
collection PubMed
description Identifying functionally relevant variants against the background of ubiquitous genetic variation is a major challenge in human genetics. For variants that fall in protein-coding regions our understanding of the genetic code and splicing allow us to identify likely candidates, but interpreting variants that fall outside of genic regions is more difficult. Here we present a new tool, GWAVA, which supports prioritisation of non-coding variants by integrating a range of annotations.
format Online
Article
Text
id pubmed-5015703
institution National Center for Biotechnology Information
language English
publishDate 2014
record_format MEDLINE/PubMed
spelling pubmed-50157032016-09-08 Functional annotation of non-coding sequence variants Ritchie, Graham R. S. Dunham, Ian Zeggini, Eleftheria Flicek, Paul Nat Methods Article Identifying functionally relevant variants against the background of ubiquitous genetic variation is a major challenge in human genetics. For variants that fall in protein-coding regions our understanding of the genetic code and splicing allow us to identify likely candidates, but interpreting variants that fall outside of genic regions is more difficult. Here we present a new tool, GWAVA, which supports prioritisation of non-coding variants by integrating a range of annotations. 2014-02-02 2014-03 /pmc/articles/PMC5015703/ /pubmed/24487584 http://dx.doi.org/10.1038/nmeth.2832 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Ritchie, Graham R. S.
Dunham, Ian
Zeggini, Eleftheria
Flicek, Paul
Functional annotation of non-coding sequence variants
title Functional annotation of non-coding sequence variants
title_full Functional annotation of non-coding sequence variants
title_fullStr Functional annotation of non-coding sequence variants
title_full_unstemmed Functional annotation of non-coding sequence variants
title_short Functional annotation of non-coding sequence variants
title_sort functional annotation of non-coding sequence variants
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5015703/
https://www.ncbi.nlm.nih.gov/pubmed/24487584
http://dx.doi.org/10.1038/nmeth.2832
work_keys_str_mv AT ritchiegrahamrs functionalannotationofnoncodingsequencevariants
AT dunhamian functionalannotationofnoncodingsequencevariants
AT zegginieleftheria functionalannotationofnoncodingsequencevariants
AT flicekpaul functionalannotationofnoncodingsequencevariants