Cargando…
Detection of Lesions Underlying Intractable Epilepsy on T1-Weighted MRI as an Outlier Detection Problem
Pattern recognition methods, such as computer aided diagnosis (CAD) systems, can help clinicians in their diagnosis by marking abnormal regions in an image. We propose a machine learning system based on a one-class support vector machine (OC-SVM) classifier for the detection of abnormalities in magn...
Autores principales: | El Azami, Meriem, Hammers, Alexander, Jung, Julien, Costes, Nicolas, Bouet, Romain, Lartizien, Carole |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5015774/ https://www.ncbi.nlm.nih.gov/pubmed/27603778 http://dx.doi.org/10.1371/journal.pone.0161498 |
Ejemplares similares
-
PET image enhancement using artificial intelligence for better characterization of epilepsy lesions
por: Flaus, Anthime, et al.
Publicado: (2022) -
Deep‐learning predicted PET can be subtracted from the true clinical fluorodeoxyglucose PET co‐registered to MRI to identify the epileptogenic zone in focal epilepsy
por: Flaus, Anthime, et al.
Publicado: (2023) -
Brain lesion segmentation through image synthesis and outlier detection
por: Bowles, Christopher, et al.
Publicado: (2017) -
Prediction and outlier detection in classification problems
por: Guan, Leying, et al.
Publicado: (2022) -
Qualitative and Quantitative Hippocampal MRI Assessments in Intractable Epilepsy
por: Singh, Paramdeep, et al.
Publicado: (2013)