Cargando…
Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow
PURPOSE: Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic int...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5015817/ https://www.ncbi.nlm.nih.gov/pubmed/27428169 http://dx.doi.org/10.1167/iovs.16-19538 |
_version_ | 1782452487773487104 |
---|---|
author | Urs, Raksha Ketterling, Jeffrey A. Silverman, Ronald H. |
author_facet | Urs, Raksha Ketterling, Jeffrey A. Silverman, Ronald H. |
author_sort | Urs, Raksha |
collection | PubMed |
description | PURPOSE: Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. METHODS: We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. RESULTS: With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. CONCLUSIONS: Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. |
format | Online Article Text |
id | pubmed-5015817 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-50158172016-09-09 Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow Urs, Raksha Ketterling, Jeffrey A. Silverman, Ronald H. Invest Ophthalmol Vis Sci Multidisciplinary Ophthalmic Imaging PURPOSE: Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. METHODS: We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. RESULTS: With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. CONCLUSIONS: Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. The Association for Research in Vision and Ophthalmology 2016-07-18 2016-07 /pmc/articles/PMC5015817/ /pubmed/27428169 http://dx.doi.org/10.1167/iovs.16-19538 Text en http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Multidisciplinary Ophthalmic Imaging Urs, Raksha Ketterling, Jeffrey A. Silverman, Ronald H. Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow |
title | Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow |
title_full | Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow |
title_fullStr | Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow |
title_full_unstemmed | Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow |
title_short | Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow |
title_sort | ultrafast ultrasound imaging of ocular anatomy and blood flow |
topic | Multidisciplinary Ophthalmic Imaging |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5015817/ https://www.ncbi.nlm.nih.gov/pubmed/27428169 http://dx.doi.org/10.1167/iovs.16-19538 |
work_keys_str_mv | AT ursraksha ultrafastultrasoundimagingofocularanatomyandbloodflow AT ketterlingjeffreya ultrafastultrasoundimagingofocularanatomyandbloodflow AT silvermanronaldh ultrafastultrasoundimagingofocularanatomyandbloodflow |