Cargando…

m(1)A and m(1)G Potently Disrupt A-RNA Structure Due to the Intrinsic Instability of Hoogsteen Base Pairs

The B-DNA double helix can dynamically accommodate G–C and A–T base pairs in either Watson-Crick or Hoogsteen configurations. Here, we show that G–C(+) and A–U Hoogsteen base pairs are strongly disfavored in A-RNA. As a result, N(1)-methyl adenosine and N(1)-methyl guanosine, which occur in DNA as a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Huiqing, Kimsey, Isaac J., Nikolova, Evgenia N., Sathyamoorthy, Bharathwaj, Grazioli, Gianmarc, McSally, James, Bai, Tianyu, Wunderlich, Christoph H., Kreutz, Christoph, Andricioaei, Ioan, Al-Hashimi, Hashim M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5016226/
https://www.ncbi.nlm.nih.gov/pubmed/27478929
http://dx.doi.org/10.1038/nsmb.3270
Descripción
Sumario:The B-DNA double helix can dynamically accommodate G–C and A–T base pairs in either Watson-Crick or Hoogsteen configurations. Here, we show that G–C(+) and A–U Hoogsteen base pairs are strongly disfavored in A-RNA. As a result, N(1)-methyl adenosine and N(1)-methyl guanosine, which occur in DNA as a form of alkylation damage, and in RNA as a posttranscriptional modification, have dramatically different consequences. They create G–C(+) and A–U Hoogsteen base pairs in duplex DNA that maintain the structural integrity of the double helix, but block base pairing all together and induce local duplex melting in RNA, providing a mechanism for potently disrupting RNA structure through posttranscriptional modifications. The markedly different propensities to form Hoogsteen base pairs in B-DNA and A-RNA may help meet the opposing requirements of maintaining genome stability on one hand, and dynamically modulating the structure of the epitranscriptome on the other.