Cargando…
Chrestenson transform FPGA embedded factorizations
Chrestenson generalized Walsh transform factorizations for parallel processing imbedded implementations on field programmable gate arrays are presented. This general base transform, sometimes referred to as the Discrete Chrestenson transform, has received special attention in recent years. In fact,...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5016497/ https://www.ncbi.nlm.nih.gov/pubmed/27652084 http://dx.doi.org/10.1186/s40064-016-3162-9 |
Sumario: | Chrestenson generalized Walsh transform factorizations for parallel processing imbedded implementations on field programmable gate arrays are presented. This general base transform, sometimes referred to as the Discrete Chrestenson transform, has received special attention in recent years. In fact, the Discrete Fourier transform and Walsh–Hadamard transform are but special cases of the Chrestenson generalized Walsh transform. Rotations of a base-p hypercube, where p is an arbitrary integer, are shown to produce dynamic contention-free memory allocation, in processor architecture. The approach is illustrated by factorizations involving the processing of matrices of the transform which are function of four variables. Parallel operations are implemented matrix multiplications. Each matrix, of dimension N × N, where N = p(n), n integer, has a structure that depends on a variable parameter k that denotes the iteration number in the factorization process. The level of parallelism, in the form of M = p(m) processors can be chosen arbitrarily by varying m between zero to its maximum value of n − 1. The result is an equation describing the generalised parallelism factorization as a function of the four variables n, p, k and m. Applications of the approach are shown in relation to configuring field programmable gate arrays for digital signal processing applications. |
---|