Cargando…
Enhancing the Surface Sensitivity of Metallic Nanostructures Using Oblique-Angle-Induced Fano Resonances
Surface sensitivity is an important factor that determines the minimum amount of biomolecules detected by surface plasmon resonance (SPR) sensors. We propose the use of oblique-angle-induced Fano resonances caused by two-mode coupling or three-mode coupling between the localized SPR mode and long-ra...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5016831/ https://www.ncbi.nlm.nih.gov/pubmed/27609431 http://dx.doi.org/10.1038/srep33126 |
Sumario: | Surface sensitivity is an important factor that determines the minimum amount of biomolecules detected by surface plasmon resonance (SPR) sensors. We propose the use of oblique-angle-induced Fano resonances caused by two-mode coupling or three-mode coupling between the localized SPR mode and long-range surface plasmon polariton modes to increase the surface sensitivities of silver capped nanoslits. The results indicate that the coupled resonance between the split SPR (−k(SPR)) and cavity modes (two-mode coupling) has a high wavelength sensitivity for small-angle incidence (2°) due to its short decay length. Additionally, three-mode coupling between the split SPR (−k(SPR)), substrate (+k(Sub)) and cavity modes has a high intensity sensitivity for large-angle incidence due to its short decay length, large resonance slope and enhanced transmission intensity. Compared to the wavelength measurement, the intensity measurement has a lower detectable (surface) concentration below 1 ng/ml (0.14 pg/mm(2)) and is reduced by at least 3 orders of magnitude. In addition, based on the calibration curve and current system noise, a theoretical detection limit of 2.73 pg/ml (0.38 fg/mm(2)) can be achieved. Such a surface concentration is close to that of prism-based SPR with phase measurement (0.1–0.2 fg/mm(2) under a phase shift of 5 mdeg). |
---|