Cargando…

An inter-laboratory comparison of standard membrane-feeding assays for evaluation of malaria transmission-blocking vaccines

BACKGROUND: An effective malaria transmission-blocking vaccine may play an important role in malaria elimination efforts, and a robust biological assay is essential for its development. The standard membrane-feeding assay (SMFA) for Plasmodium falciparum infection of mosquitoes is considered a “gold...

Descripción completa

Detalles Bibliográficos
Autores principales: Miura, Kazutoyo, Stone, Will J. R., Koolen, Karin M., Deng, Bingbing, Zhou, Luwen, van Gemert, Geert-Jan, Locke, Emily, Morin, Merribeth, Bousema, Teun, Sauerwein, Robert W., Long, Carole A., Dechering, Koen J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5016893/
https://www.ncbi.nlm.nih.gov/pubmed/27612458
http://dx.doi.org/10.1186/s12936-016-1515-z
_version_ 1782452640756531200
author Miura, Kazutoyo
Stone, Will J. R.
Koolen, Karin M.
Deng, Bingbing
Zhou, Luwen
van Gemert, Geert-Jan
Locke, Emily
Morin, Merribeth
Bousema, Teun
Sauerwein, Robert W.
Long, Carole A.
Dechering, Koen J.
author_facet Miura, Kazutoyo
Stone, Will J. R.
Koolen, Karin M.
Deng, Bingbing
Zhou, Luwen
van Gemert, Geert-Jan
Locke, Emily
Morin, Merribeth
Bousema, Teun
Sauerwein, Robert W.
Long, Carole A.
Dechering, Koen J.
author_sort Miura, Kazutoyo
collection PubMed
description BACKGROUND: An effective malaria transmission-blocking vaccine may play an important role in malaria elimination efforts, and a robust biological assay is essential for its development. The standard membrane-feeding assay (SMFA) for Plasmodium falciparum infection of mosquitoes is considered a “gold standard” assay to measure transmission-blocking activity of test antibodies, and has been utilized widely in both non-clinical and clinical studies. While several studies have discussed the inherent variability of SMFA within a study group, there has been no assessment of inter-laboratory variation. Therefore, there is currently no assurance that SMFA results are comparable between different studies. METHODS: Mouse anti-Pfs25 monoclonal antibody (mAb, 4B7 mAb), rat anti-Pfs48/45 mAb (85RF45.1 mAb) and a human polyclonal antibody (pAb) collected from a malaria-exposed adult were tested at the same concentrations (6–94 μg/mL for 4B7, 1.2–31.3 μg/mL for 85RF45.1 and 23–630 μg/mL for human pAb) in two laboratories following their own standardized SMFA protocols. The mAbs and pAb, previously shown to have strong inhibition activities in the SMFA, were tested at three or four concentrations in two or three independent assays in each laboratory, and percent inhibition in mean oocyst intensity relative to a control in the same feed was determined in each feeding experiment. RESULTS: Both monoclonal and polyclonal antibodies dose-dependently reduced oocyst intensity in all experiments performed at the two test sites. In both laboratories, the inter-assay variability in percent inhibition in oocyst intensity decreased at higher levels of inhibition, regardless of which antibody was tested. At antibody concentrations that led to a >80 % reduction in oocyst numbers, the inter-laboratory variations were in the same range compared with the inter-assay variation observed within a single laboratory, and the differences in best estimates from multiple feeds between the two laboratories were <5 percentage points. CONCLUSIONS: This study confirms previous reports that the precision of the SMFA increases with increasing percent inhibition. Moreover, the variation between the two laboratories is not greater than the variation observed within a laboratory. The findings of this study provide guidance for comparison of SMFA data from different laboratories. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12936-016-1515-z) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5016893
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-50168932016-09-10 An inter-laboratory comparison of standard membrane-feeding assays for evaluation of malaria transmission-blocking vaccines Miura, Kazutoyo Stone, Will J. R. Koolen, Karin M. Deng, Bingbing Zhou, Luwen van Gemert, Geert-Jan Locke, Emily Morin, Merribeth Bousema, Teun Sauerwein, Robert W. Long, Carole A. Dechering, Koen J. Malar J Research BACKGROUND: An effective malaria transmission-blocking vaccine may play an important role in malaria elimination efforts, and a robust biological assay is essential for its development. The standard membrane-feeding assay (SMFA) for Plasmodium falciparum infection of mosquitoes is considered a “gold standard” assay to measure transmission-blocking activity of test antibodies, and has been utilized widely in both non-clinical and clinical studies. While several studies have discussed the inherent variability of SMFA within a study group, there has been no assessment of inter-laboratory variation. Therefore, there is currently no assurance that SMFA results are comparable between different studies. METHODS: Mouse anti-Pfs25 monoclonal antibody (mAb, 4B7 mAb), rat anti-Pfs48/45 mAb (85RF45.1 mAb) and a human polyclonal antibody (pAb) collected from a malaria-exposed adult were tested at the same concentrations (6–94 μg/mL for 4B7, 1.2–31.3 μg/mL for 85RF45.1 and 23–630 μg/mL for human pAb) in two laboratories following their own standardized SMFA protocols. The mAbs and pAb, previously shown to have strong inhibition activities in the SMFA, were tested at three or four concentrations in two or three independent assays in each laboratory, and percent inhibition in mean oocyst intensity relative to a control in the same feed was determined in each feeding experiment. RESULTS: Both monoclonal and polyclonal antibodies dose-dependently reduced oocyst intensity in all experiments performed at the two test sites. In both laboratories, the inter-assay variability in percent inhibition in oocyst intensity decreased at higher levels of inhibition, regardless of which antibody was tested. At antibody concentrations that led to a >80 % reduction in oocyst numbers, the inter-laboratory variations were in the same range compared with the inter-assay variation observed within a single laboratory, and the differences in best estimates from multiple feeds between the two laboratories were <5 percentage points. CONCLUSIONS: This study confirms previous reports that the precision of the SMFA increases with increasing percent inhibition. Moreover, the variation between the two laboratories is not greater than the variation observed within a laboratory. The findings of this study provide guidance for comparison of SMFA data from different laboratories. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12936-016-1515-z) contains supplementary material, which is available to authorized users. BioMed Central 2016-09-09 /pmc/articles/PMC5016893/ /pubmed/27612458 http://dx.doi.org/10.1186/s12936-016-1515-z Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Miura, Kazutoyo
Stone, Will J. R.
Koolen, Karin M.
Deng, Bingbing
Zhou, Luwen
van Gemert, Geert-Jan
Locke, Emily
Morin, Merribeth
Bousema, Teun
Sauerwein, Robert W.
Long, Carole A.
Dechering, Koen J.
An inter-laboratory comparison of standard membrane-feeding assays for evaluation of malaria transmission-blocking vaccines
title An inter-laboratory comparison of standard membrane-feeding assays for evaluation of malaria transmission-blocking vaccines
title_full An inter-laboratory comparison of standard membrane-feeding assays for evaluation of malaria transmission-blocking vaccines
title_fullStr An inter-laboratory comparison of standard membrane-feeding assays for evaluation of malaria transmission-blocking vaccines
title_full_unstemmed An inter-laboratory comparison of standard membrane-feeding assays for evaluation of malaria transmission-blocking vaccines
title_short An inter-laboratory comparison of standard membrane-feeding assays for evaluation of malaria transmission-blocking vaccines
title_sort inter-laboratory comparison of standard membrane-feeding assays for evaluation of malaria transmission-blocking vaccines
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5016893/
https://www.ncbi.nlm.nih.gov/pubmed/27612458
http://dx.doi.org/10.1186/s12936-016-1515-z
work_keys_str_mv AT miurakazutoyo aninterlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT stonewilljr aninterlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT koolenkarinm aninterlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT dengbingbing aninterlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT zhouluwen aninterlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT vangemertgeertjan aninterlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT lockeemily aninterlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT morinmerribeth aninterlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT bousemateun aninterlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT sauerweinrobertw aninterlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT longcarolea aninterlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT decheringkoenj aninterlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT miurakazutoyo interlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT stonewilljr interlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT koolenkarinm interlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT dengbingbing interlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT zhouluwen interlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT vangemertgeertjan interlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT lockeemily interlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT morinmerribeth interlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT bousemateun interlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT sauerweinrobertw interlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT longcarolea interlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines
AT decheringkoenj interlaboratorycomparisonofstandardmembranefeedingassaysforevaluationofmalariatransmissionblockingvaccines