Cargando…
Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection
In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle...
Autores principales: | Chen, Qiang, Chen, Yunhao, Jiang, Weiguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017370/ https://www.ncbi.nlm.nih.gov/pubmed/27483285 http://dx.doi.org/10.3390/s16081204 |
Ejemplares similares
-
Automated object recognition in high-resolution optical remote sensing imagery
por: Yao, Yazhou, et al.
Publicado: (2023) -
Channel and Feature Selection for a Motor Imagery-Based BCI System Using Multilevel Particle Swarm Optimization
por: Qi, Yingji, et al.
Publicado: (2020) -
Double-Group Particle Swarm Optimization and Its Application in Remote Sensing Image Segmentation
por: Shen, Liang, et al.
Publicado: (2018) -
Remote sensing of zooplankton swarms
por: Basedow, Sünnje L., et al.
Publicado: (2019) -
Remote Sensing Imagery Super Resolution Based on Adaptive Multi-Scale Feature Fusion Network
por: Wang, Xinying, et al.
Publicado: (2020)