Cargando…
Preprocessing the Nintendo Wii Board Signal to Derive More Accurate Descriptors of Statokinesigrams
During the past few years, the Nintendo Wii Balance Board (WBB) has been used in postural control research as an affordable but less reliable replacement for laboratory grade force platforms. However, the WBB suffers some limitations, such as a lower accuracy and an inconsistent sampling rate. In th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017374/ https://www.ncbi.nlm.nih.gov/pubmed/27490545 http://dx.doi.org/10.3390/s16081208 |
_version_ | 1782452733492592640 |
---|---|
author | Audiffren, Julien Contal, Emile |
author_facet | Audiffren, Julien Contal, Emile |
author_sort | Audiffren, Julien |
collection | PubMed |
description | During the past few years, the Nintendo Wii Balance Board (WBB) has been used in postural control research as an affordable but less reliable replacement for laboratory grade force platforms. However, the WBB suffers some limitations, such as a lower accuracy and an inconsistent sampling rate. In this study, we focus on the latter, namely the non uniform acquisition frequency. We show that this problem, combined with the poor signal to noise ratio of the WBB, can drastically decrease the quality of the obtained information if not handled properly. We propose a new resampling method, Sliding Window Average with Relevance Interval Interpolation (SWARII), specifically designed with the WBB in mind, for which we provide an open source implementation. We compare it with several existing methods commonly used in postural control, both on synthetic and experimental data. The results show that some methods, such as linear and piecewise constant interpolations should definitely be avoided, particularly when the resulting signal is differentiated, which is necessary to estimate speed, an important feature in postural control. Other methods, such as averaging on sliding windows or SWARII, perform significantly better on synthetic dataset, and produce results more similar to the laboratory-grade AMTI force plate (AFP) during experiments. Those methods should be preferred when resampling data collected from a WBB. |
format | Online Article Text |
id | pubmed-5017374 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-50173742016-09-22 Preprocessing the Nintendo Wii Board Signal to Derive More Accurate Descriptors of Statokinesigrams Audiffren, Julien Contal, Emile Sensors (Basel) Article During the past few years, the Nintendo Wii Balance Board (WBB) has been used in postural control research as an affordable but less reliable replacement for laboratory grade force platforms. However, the WBB suffers some limitations, such as a lower accuracy and an inconsistent sampling rate. In this study, we focus on the latter, namely the non uniform acquisition frequency. We show that this problem, combined with the poor signal to noise ratio of the WBB, can drastically decrease the quality of the obtained information if not handled properly. We propose a new resampling method, Sliding Window Average with Relevance Interval Interpolation (SWARII), specifically designed with the WBB in mind, for which we provide an open source implementation. We compare it with several existing methods commonly used in postural control, both on synthetic and experimental data. The results show that some methods, such as linear and piecewise constant interpolations should definitely be avoided, particularly when the resulting signal is differentiated, which is necessary to estimate speed, an important feature in postural control. Other methods, such as averaging on sliding windows or SWARII, perform significantly better on synthetic dataset, and produce results more similar to the laboratory-grade AMTI force plate (AFP) during experiments. Those methods should be preferred when resampling data collected from a WBB. MDPI 2016-08-01 /pmc/articles/PMC5017374/ /pubmed/27490545 http://dx.doi.org/10.3390/s16081208 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Audiffren, Julien Contal, Emile Preprocessing the Nintendo Wii Board Signal to Derive More Accurate Descriptors of Statokinesigrams |
title | Preprocessing the Nintendo Wii Board Signal to Derive More Accurate Descriptors of Statokinesigrams |
title_full | Preprocessing the Nintendo Wii Board Signal to Derive More Accurate Descriptors of Statokinesigrams |
title_fullStr | Preprocessing the Nintendo Wii Board Signal to Derive More Accurate Descriptors of Statokinesigrams |
title_full_unstemmed | Preprocessing the Nintendo Wii Board Signal to Derive More Accurate Descriptors of Statokinesigrams |
title_short | Preprocessing the Nintendo Wii Board Signal to Derive More Accurate Descriptors of Statokinesigrams |
title_sort | preprocessing the nintendo wii board signal to derive more accurate descriptors of statokinesigrams |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017374/ https://www.ncbi.nlm.nih.gov/pubmed/27490545 http://dx.doi.org/10.3390/s16081208 |
work_keys_str_mv | AT audiffrenjulien preprocessingthenintendowiiboardsignaltoderivemoreaccuratedescriptorsofstatokinesigrams AT contalemile preprocessingthenintendowiiboardsignaltoderivemoreaccuratedescriptorsofstatokinesigrams |