Cargando…

Sentence Recognition Prediction for Hearing-impaired Listeners in Stationary and Fluctuation Noise With FADE: Empowering the Attenuation and Distortion Concept by Plomp With a Quantitative Processing Model

To characterize the individual patient’s hearing impairment as obtained with the matrix sentence recognition test, a simulation Framework for Auditory Discrimination Experiments (FADE) is extended here using the Attenuation and Distortion (A+D) approach by Plomp as a blueprint for setting the indivi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kollmeier, Birger, Schädler, Marc René, Warzybok, Anna, Meyer, Bernd T., Brand, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017573/
https://www.ncbi.nlm.nih.gov/pubmed/27604782
http://dx.doi.org/10.1177/2331216516655795
Descripción
Sumario:To characterize the individual patient’s hearing impairment as obtained with the matrix sentence recognition test, a simulation Framework for Auditory Discrimination Experiments (FADE) is extended here using the Attenuation and Distortion (A+D) approach by Plomp as a blueprint for setting the individual processing parameters. FADE has been shown to predict the outcome of both speech recognition tests and psychoacoustic experiments based on simulations using an automatic speech recognition system requiring only few assumptions. It builds on the closed-set matrix sentence recognition test which is advantageous for testing individual speech recognition in a way comparable across languages. Individual predictions of speech recognition thresholds in stationary and in fluctuating noise were derived using the audiogram and an estimate of the internal level uncertainty for modeling the individual Plomp curves fitted to the data with the Attenuation (A-) and Distortion (D-) parameters of the Plomp approach. The “typical” audiogram shapes from Bisgaard et al with or without a “typical” level uncertainty and the individual data were used for individual predictions. As a result, the individualization of the level uncertainty was found to be more important than the exact shape of the individual audiogram to accurately model the outcome of the German Matrix test in stationary or fluctuating noise for listeners with hearing impairment. The prediction accuracy of the individualized approach also outperforms the (modified) Speech Intelligibility Index approach which is based on the individual threshold data only.