Cargando…
Abundant Topological Outliers in Social Media Data and Their Effect on Spatial Analysis
Twitter and related social media feeds have become valuable data sources to many fields of research. Numerous researchers have thereby used social media posts for spatial analysis, since many of them contain explicit geographic locations. However, despite its widespread use within applied research,...
Autores principales: | Westerholt, Rene, Steiger, Enrico, Resch, Bernd, Zipf, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017681/ https://www.ncbi.nlm.nih.gov/pubmed/27611199 http://dx.doi.org/10.1371/journal.pone.0162360 |
Ejemplares similares
-
Correction: Abundant Topological Outliers in Social Media Data and Their Effect on Spatial Analysis
por: Westerholt, Rene, et al.
Publicado: (2018) -
Spatial crime distribution and prediction for sporting events using social media
por: Ristea, Alina, et al.
Publicado: (2020) -
Portability of semantic and spatial–temporal machine learning methods to analyse social media for near-real-time disaster monitoring
por: Havas, Clemens, et al.
Publicado: (2021) -
Outliers in statistical data
por: Barnett, Vic
Publicado: (1994) -
Outliers in statistical data
por: Barnett, Vic, et al.
Publicado: (1974)