Cargando…

Structural basis for KCNE3 modulation of potassium recycling in epithelia

The single-span membrane protein KCNE3 modulates a variety of voltage-gated ion channels in diverse biological contexts. In epithelial cells, KCNE3 regulates the function of the KCNQ1 potassium ion (K(+)) channel to enable K(+) recycling coupled to transepithelial chloride ion (Cl(−)) secretion, a p...

Descripción completa

Detalles Bibliográficos
Autores principales: Kroncke, Brett M., Van Horn, Wade D., Smith, Jarrod, Kang, CongBao, Welch, Richard C., Song, Yuanli, Nannemann, David P., Taylor, Keenan C., Sisco, Nicholas J., George, Alfred L., Meiler, Jens, Vanoye, Carlos G., Sanders, Charles R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017827/
https://www.ncbi.nlm.nih.gov/pubmed/27626070
http://dx.doi.org/10.1126/sciadv.1501228
_version_ 1782452829271621632
author Kroncke, Brett M.
Van Horn, Wade D.
Smith, Jarrod
Kang, CongBao
Welch, Richard C.
Song, Yuanli
Nannemann, David P.
Taylor, Keenan C.
Sisco, Nicholas J.
George, Alfred L.
Meiler, Jens
Vanoye, Carlos G.
Sanders, Charles R.
author_facet Kroncke, Brett M.
Van Horn, Wade D.
Smith, Jarrod
Kang, CongBao
Welch, Richard C.
Song, Yuanli
Nannemann, David P.
Taylor, Keenan C.
Sisco, Nicholas J.
George, Alfred L.
Meiler, Jens
Vanoye, Carlos G.
Sanders, Charles R.
author_sort Kroncke, Brett M.
collection PubMed
description The single-span membrane protein KCNE3 modulates a variety of voltage-gated ion channels in diverse biological contexts. In epithelial cells, KCNE3 regulates the function of the KCNQ1 potassium ion (K(+)) channel to enable K(+) recycling coupled to transepithelial chloride ion (Cl(−)) secretion, a physiologically critical cellular transport process in various organs and whose malfunction causes diseases, such as cystic fibrosis (CF), cholera, and pulmonary edema. Structural, computational, biochemical, and electrophysiological studies lead to an atomically explicit integrative structural model of the KCNE3-KCNQ1 complex that explains how KCNE3 induces the constitutive activation of KCNQ1 channel activity, a crucial component in K(+) recycling. Central to this mechanism are direct interactions of KCNE3 residues at both ends of its transmembrane domain with residues on the intra- and extracellular ends of the KCNQ1 voltage-sensing domain S4 helix. These interactions appear to stabilize the activated “up” state configuration of S4, a prerequisite for full opening of the KCNQ1 channel gate. In addition, the integrative structural model was used to guide electrophysiological studies that illuminate the molecular basis for how estrogen exacerbates CF lung disease in female patients, a phenomenon known as the “CF gender gap.”
format Online
Article
Text
id pubmed-5017827
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-50178272016-09-13 Structural basis for KCNE3 modulation of potassium recycling in epithelia Kroncke, Brett M. Van Horn, Wade D. Smith, Jarrod Kang, CongBao Welch, Richard C. Song, Yuanli Nannemann, David P. Taylor, Keenan C. Sisco, Nicholas J. George, Alfred L. Meiler, Jens Vanoye, Carlos G. Sanders, Charles R. Sci Adv Research Articles The single-span membrane protein KCNE3 modulates a variety of voltage-gated ion channels in diverse biological contexts. In epithelial cells, KCNE3 regulates the function of the KCNQ1 potassium ion (K(+)) channel to enable K(+) recycling coupled to transepithelial chloride ion (Cl(−)) secretion, a physiologically critical cellular transport process in various organs and whose malfunction causes diseases, such as cystic fibrosis (CF), cholera, and pulmonary edema. Structural, computational, biochemical, and electrophysiological studies lead to an atomically explicit integrative structural model of the KCNE3-KCNQ1 complex that explains how KCNE3 induces the constitutive activation of KCNQ1 channel activity, a crucial component in K(+) recycling. Central to this mechanism are direct interactions of KCNE3 residues at both ends of its transmembrane domain with residues on the intra- and extracellular ends of the KCNQ1 voltage-sensing domain S4 helix. These interactions appear to stabilize the activated “up” state configuration of S4, a prerequisite for full opening of the KCNQ1 channel gate. In addition, the integrative structural model was used to guide electrophysiological studies that illuminate the molecular basis for how estrogen exacerbates CF lung disease in female patients, a phenomenon known as the “CF gender gap.” American Association for the Advancement of Science 2016-09-09 /pmc/articles/PMC5017827/ /pubmed/27626070 http://dx.doi.org/10.1126/sciadv.1501228 Text en Copyright © 2016, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Kroncke, Brett M.
Van Horn, Wade D.
Smith, Jarrod
Kang, CongBao
Welch, Richard C.
Song, Yuanli
Nannemann, David P.
Taylor, Keenan C.
Sisco, Nicholas J.
George, Alfred L.
Meiler, Jens
Vanoye, Carlos G.
Sanders, Charles R.
Structural basis for KCNE3 modulation of potassium recycling in epithelia
title Structural basis for KCNE3 modulation of potassium recycling in epithelia
title_full Structural basis for KCNE3 modulation of potassium recycling in epithelia
title_fullStr Structural basis for KCNE3 modulation of potassium recycling in epithelia
title_full_unstemmed Structural basis for KCNE3 modulation of potassium recycling in epithelia
title_short Structural basis for KCNE3 modulation of potassium recycling in epithelia
title_sort structural basis for kcne3 modulation of potassium recycling in epithelia
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017827/
https://www.ncbi.nlm.nih.gov/pubmed/27626070
http://dx.doi.org/10.1126/sciadv.1501228
work_keys_str_mv AT kronckebrettm structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia
AT vanhornwaded structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia
AT smithjarrod structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia
AT kangcongbao structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia
AT welchrichardc structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia
AT songyuanli structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia
AT nannemanndavidp structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia
AT taylorkeenanc structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia
AT sisconicholasj structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia
AT georgealfredl structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia
AT meilerjens structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia
AT vanoyecarlosg structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia
AT sanderscharlesr structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia