Cargando…
Structural basis for KCNE3 modulation of potassium recycling in epithelia
The single-span membrane protein KCNE3 modulates a variety of voltage-gated ion channels in diverse biological contexts. In epithelial cells, KCNE3 regulates the function of the KCNQ1 potassium ion (K(+)) channel to enable K(+) recycling coupled to transepithelial chloride ion (Cl(−)) secretion, a p...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017827/ https://www.ncbi.nlm.nih.gov/pubmed/27626070 http://dx.doi.org/10.1126/sciadv.1501228 |
_version_ | 1782452829271621632 |
---|---|
author | Kroncke, Brett M. Van Horn, Wade D. Smith, Jarrod Kang, CongBao Welch, Richard C. Song, Yuanli Nannemann, David P. Taylor, Keenan C. Sisco, Nicholas J. George, Alfred L. Meiler, Jens Vanoye, Carlos G. Sanders, Charles R. |
author_facet | Kroncke, Brett M. Van Horn, Wade D. Smith, Jarrod Kang, CongBao Welch, Richard C. Song, Yuanli Nannemann, David P. Taylor, Keenan C. Sisco, Nicholas J. George, Alfred L. Meiler, Jens Vanoye, Carlos G. Sanders, Charles R. |
author_sort | Kroncke, Brett M. |
collection | PubMed |
description | The single-span membrane protein KCNE3 modulates a variety of voltage-gated ion channels in diverse biological contexts. In epithelial cells, KCNE3 regulates the function of the KCNQ1 potassium ion (K(+)) channel to enable K(+) recycling coupled to transepithelial chloride ion (Cl(−)) secretion, a physiologically critical cellular transport process in various organs and whose malfunction causes diseases, such as cystic fibrosis (CF), cholera, and pulmonary edema. Structural, computational, biochemical, and electrophysiological studies lead to an atomically explicit integrative structural model of the KCNE3-KCNQ1 complex that explains how KCNE3 induces the constitutive activation of KCNQ1 channel activity, a crucial component in K(+) recycling. Central to this mechanism are direct interactions of KCNE3 residues at both ends of its transmembrane domain with residues on the intra- and extracellular ends of the KCNQ1 voltage-sensing domain S4 helix. These interactions appear to stabilize the activated “up” state configuration of S4, a prerequisite for full opening of the KCNQ1 channel gate. In addition, the integrative structural model was used to guide electrophysiological studies that illuminate the molecular basis for how estrogen exacerbates CF lung disease in female patients, a phenomenon known as the “CF gender gap.” |
format | Online Article Text |
id | pubmed-5017827 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-50178272016-09-13 Structural basis for KCNE3 modulation of potassium recycling in epithelia Kroncke, Brett M. Van Horn, Wade D. Smith, Jarrod Kang, CongBao Welch, Richard C. Song, Yuanli Nannemann, David P. Taylor, Keenan C. Sisco, Nicholas J. George, Alfred L. Meiler, Jens Vanoye, Carlos G. Sanders, Charles R. Sci Adv Research Articles The single-span membrane protein KCNE3 modulates a variety of voltage-gated ion channels in diverse biological contexts. In epithelial cells, KCNE3 regulates the function of the KCNQ1 potassium ion (K(+)) channel to enable K(+) recycling coupled to transepithelial chloride ion (Cl(−)) secretion, a physiologically critical cellular transport process in various organs and whose malfunction causes diseases, such as cystic fibrosis (CF), cholera, and pulmonary edema. Structural, computational, biochemical, and electrophysiological studies lead to an atomically explicit integrative structural model of the KCNE3-KCNQ1 complex that explains how KCNE3 induces the constitutive activation of KCNQ1 channel activity, a crucial component in K(+) recycling. Central to this mechanism are direct interactions of KCNE3 residues at both ends of its transmembrane domain with residues on the intra- and extracellular ends of the KCNQ1 voltage-sensing domain S4 helix. These interactions appear to stabilize the activated “up” state configuration of S4, a prerequisite for full opening of the KCNQ1 channel gate. In addition, the integrative structural model was used to guide electrophysiological studies that illuminate the molecular basis for how estrogen exacerbates CF lung disease in female patients, a phenomenon known as the “CF gender gap.” American Association for the Advancement of Science 2016-09-09 /pmc/articles/PMC5017827/ /pubmed/27626070 http://dx.doi.org/10.1126/sciadv.1501228 Text en Copyright © 2016, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Kroncke, Brett M. Van Horn, Wade D. Smith, Jarrod Kang, CongBao Welch, Richard C. Song, Yuanli Nannemann, David P. Taylor, Keenan C. Sisco, Nicholas J. George, Alfred L. Meiler, Jens Vanoye, Carlos G. Sanders, Charles R. Structural basis for KCNE3 modulation of potassium recycling in epithelia |
title | Structural basis for KCNE3 modulation of potassium recycling in epithelia |
title_full | Structural basis for KCNE3 modulation of potassium recycling in epithelia |
title_fullStr | Structural basis for KCNE3 modulation of potassium recycling in epithelia |
title_full_unstemmed | Structural basis for KCNE3 modulation of potassium recycling in epithelia |
title_short | Structural basis for KCNE3 modulation of potassium recycling in epithelia |
title_sort | structural basis for kcne3 modulation of potassium recycling in epithelia |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017827/ https://www.ncbi.nlm.nih.gov/pubmed/27626070 http://dx.doi.org/10.1126/sciadv.1501228 |
work_keys_str_mv | AT kronckebrettm structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia AT vanhornwaded structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia AT smithjarrod structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia AT kangcongbao structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia AT welchrichardc structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia AT songyuanli structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia AT nannemanndavidp structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia AT taylorkeenanc structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia AT sisconicholasj structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia AT georgealfredl structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia AT meilerjens structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia AT vanoyecarlosg structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia AT sanderscharlesr structuralbasisforkcne3modulationofpotassiumrecyclinginepithelia |