Cargando…

Analytic Modeling of Neural Tissue: I. A Spherical Bidomain

Presented here is a model of neural tissue in a conductive medium stimulated by externally injected currents. The tissue is described as a conductively isotropic bidomain, i.e. comprised of intra and extracellular regions that occupy the same space, as well as the membrane that divides them, and the...

Descripción completa

Detalles Bibliográficos
Autores principales: Schwartz, Benjamin L., Chauhan, Munish, Sadleir, Rosalind J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018001/
https://www.ncbi.nlm.nih.gov/pubmed/27613652
http://dx.doi.org/10.1186/s13408-016-0041-1
Descripción
Sumario:Presented here is a model of neural tissue in a conductive medium stimulated by externally injected currents. The tissue is described as a conductively isotropic bidomain, i.e. comprised of intra and extracellular regions that occupy the same space, as well as the membrane that divides them, and the injection currents are described as a pair of source and sink points. The problem is solved in three spatial dimensions and defined in spherical coordinates [Formula: see text] . The system of coupled partial differential equations is solved by recasting the problem to be in terms of the membrane and a monodomain, interpreted as a weighted average of the intra and extracellular domains. The membrane and monodomain are defined by the scalar Helmholtz and Laplace equations, respectively, which are both separable in spherical coordinates. Product solutions are thus assumed and given through certain transcendental functions. From these electrical potentials, analytic expressions for current density are derived and from those fields the magnetic flux density is calculated. Numerical examples are considered wherein the interstitial conductivity is varied, as well as the limiting case of the problem simplifying to two dimensions due to azimuthal independence. Finally, future modeling work is discussed.