Cargando…
Stochastic convex sparse principal component analysis
Principal component analysis (PCA) is a dimensionality reduction and data analysis tool commonly used in many areas. The main idea of PCA is to represent high-dimensional data with a few representative components that capture most of the variance present in the data. However, there is an obvious dis...
Autores principales: | Baytas, Inci M., Lin, Kaixiang, Wang, Fei, Jain, Anil K., Zhou, Jiayu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018037/ https://www.ncbi.nlm.nih.gov/pubmed/27660635 http://dx.doi.org/10.1186/s13637-016-0045-x |
Ejemplares similares
-
Craniofacial similarity analysis through sparse principal component analysis
por: Zhao, Junli, et al.
Publicado: (2017) -
An efficient classification method based on principal component and sparse representation
por: Zhai, Lin, et al.
Publicado: (2016) -
Convex and stochastic optimization
por: Bonnans, J Frédéric
Publicado: (2019) -
Convex and stochastic optimization /
por: Bonnans, J. F. (Joseph Frédéric), 1957-
Publicado: (2019) -
Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis
por: Lin, Nan, et al.
Publicado: (2015)