Cargando…
Seasonal changes in fish assemblage structure at a shallow seamount in the Gulf of California
Seamounts have generally been identified as locations that can promote elevated productivity, biomass and predator biodiversity. These properties attract seamount-associated fisheries where elevated harvests can be obtained relative to surrounding areas. There exists large variation in the geologica...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018667/ https://www.ncbi.nlm.nih.gov/pubmed/27651985 http://dx.doi.org/10.7717/peerj.2357 |
_version_ | 1782452952430018560 |
---|---|
author | Jorgensen, Salvador J. Klimley, A. Peter Muhlia-Melo, Arturo Morgan, Steven G. |
author_facet | Jorgensen, Salvador J. Klimley, A. Peter Muhlia-Melo, Arturo Morgan, Steven G. |
author_sort | Jorgensen, Salvador J. |
collection | PubMed |
description | Seamounts have generally been identified as locations that can promote elevated productivity, biomass and predator biodiversity. These properties attract seamount-associated fisheries where elevated harvests can be obtained relative to surrounding areas. There exists large variation in the geological and oceanographic environment among the thousands of locations that fall within the broad definition of seamount. Global seamount surveys have revealed that not all seamounts are hotspots of biodiversity, and there remains a strong need to understand the mechanisms that underlie variation in species richness observed. We examined the process of fish species assembly at El Bajo Espiritu Santo (EBES) seamount in the Gulf of California over a five-year study period. To effectively quantify the relative abundance of fast-moving and schooling fishes in a ‘blue water’ habitat, we developed a simplified underwater visual census (UVC) methodology and analysis framework suitable for this setting and applicable to future studies in similar environments. We found correlations between seasonally changing community structure and variability in oceanographic conditions. Individual species responses to thermal habitat at EBES revealed three distinct assemblages, a ‘fall assemblage’ tracking warmer overall temperature, a ‘spring assemblage’ correlated with cooler temperature, and a ‘year-round assemblage’ with no significant response to temperature. Species richness was greatest in spring, when cool and warm water masses stratified the water column and a greater number of species from all three assemblages co-occurred. We discuss our findings in the context of potential mechanisms that could account for predator biodiversity at shallow seamounts. |
format | Online Article Text |
id | pubmed-5018667 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-50186672016-09-20 Seasonal changes in fish assemblage structure at a shallow seamount in the Gulf of California Jorgensen, Salvador J. Klimley, A. Peter Muhlia-Melo, Arturo Morgan, Steven G. PeerJ Biodiversity Seamounts have generally been identified as locations that can promote elevated productivity, biomass and predator biodiversity. These properties attract seamount-associated fisheries where elevated harvests can be obtained relative to surrounding areas. There exists large variation in the geological and oceanographic environment among the thousands of locations that fall within the broad definition of seamount. Global seamount surveys have revealed that not all seamounts are hotspots of biodiversity, and there remains a strong need to understand the mechanisms that underlie variation in species richness observed. We examined the process of fish species assembly at El Bajo Espiritu Santo (EBES) seamount in the Gulf of California over a five-year study period. To effectively quantify the relative abundance of fast-moving and schooling fishes in a ‘blue water’ habitat, we developed a simplified underwater visual census (UVC) methodology and analysis framework suitable for this setting and applicable to future studies in similar environments. We found correlations between seasonally changing community structure and variability in oceanographic conditions. Individual species responses to thermal habitat at EBES revealed three distinct assemblages, a ‘fall assemblage’ tracking warmer overall temperature, a ‘spring assemblage’ correlated with cooler temperature, and a ‘year-round assemblage’ with no significant response to temperature. Species richness was greatest in spring, when cool and warm water masses stratified the water column and a greater number of species from all three assemblages co-occurred. We discuss our findings in the context of potential mechanisms that could account for predator biodiversity at shallow seamounts. PeerJ Inc. 2016-09-06 /pmc/articles/PMC5018667/ /pubmed/27651985 http://dx.doi.org/10.7717/peerj.2357 Text en © 2016 Jorgensen et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Biodiversity Jorgensen, Salvador J. Klimley, A. Peter Muhlia-Melo, Arturo Morgan, Steven G. Seasonal changes in fish assemblage structure at a shallow seamount in the Gulf of California |
title | Seasonal changes in fish assemblage structure at a shallow seamount in the Gulf of California |
title_full | Seasonal changes in fish assemblage structure at a shallow seamount in the Gulf of California |
title_fullStr | Seasonal changes in fish assemblage structure at a shallow seamount in the Gulf of California |
title_full_unstemmed | Seasonal changes in fish assemblage structure at a shallow seamount in the Gulf of California |
title_short | Seasonal changes in fish assemblage structure at a shallow seamount in the Gulf of California |
title_sort | seasonal changes in fish assemblage structure at a shallow seamount in the gulf of california |
topic | Biodiversity |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018667/ https://www.ncbi.nlm.nih.gov/pubmed/27651985 http://dx.doi.org/10.7717/peerj.2357 |
work_keys_str_mv | AT jorgensensalvadorj seasonalchangesinfishassemblagestructureatashallowseamountinthegulfofcalifornia AT klimleyapeter seasonalchangesinfishassemblagestructureatashallowseamountinthegulfofcalifornia AT muhliameloarturo seasonalchangesinfishassemblagestructureatashallowseamountinthegulfofcalifornia AT morgansteveng seasonalchangesinfishassemblagestructureatashallowseamountinthegulfofcalifornia |