Cargando…
Localisation of 11β‐Hydroxysteroid Dehydrogenase Type 2 in Mineralocorticoid Receptor Expressing Magnocellular Neurosecretory Neurones of the Rat Supraoptic and Paraventricular Nuclei
An accumulating body of evidence suggests that the activity of the mineralocorticoid, aldosterone, in the brain via the mineralocorticoid receptor (MR) plays an important role in the regulation of blood pressure. MR was recently found in vasopressin and oxytocin synthesising magnocellular neurosecre...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5019266/ https://www.ncbi.nlm.nih.gov/pubmed/26403275 http://dx.doi.org/10.1111/jne.12325 |
_version_ | 1782453025445511168 |
---|---|
author | Haque, M. Wilson, R. Sharma, K. Mills, N. J. Teruyama, R. |
author_facet | Haque, M. Wilson, R. Sharma, K. Mills, N. J. Teruyama, R. |
author_sort | Haque, M. |
collection | PubMed |
description | An accumulating body of evidence suggests that the activity of the mineralocorticoid, aldosterone, in the brain via the mineralocorticoid receptor (MR) plays an important role in the regulation of blood pressure. MR was recently found in vasopressin and oxytocin synthesising magnocellular neurosecretory cells (MNCs) in both the paraventricular (PVN) and supraoptic (SON) nuclei in the hypothalamus. Considering the physiological effects of these hormones, MR in these neurones may be an important site mediating the action of aldosterone in blood pressure regulation within the brain. However, aldosterone activation of MR in the hypothalamus remains controversial as a result of the high binding affinity of glucocorticoids to MR at substantially higher concentrations compared to aldosterone. In aldosterone‐sensitive epithelia, the enzyme 11β‐hydroxysteroid dehydrogenase type 2 (11β‐HSD2) prevents glucocorticoids from binding to MR by converting glucocorticoids into inactive metabolites. The present study aimed to determine whether 11β‐HSD2, which increases aldosterone selectivity, is expressed in MNCs. Specific 11β‐HSD2 immunoreactivity was found in the cytoplasm of the MNCs in both the SON and PVN. In addition, double‐fluorescence confocal microscopy demonstrated that MR‐immunoreactivity and 11β‐HSD2‐in situ hybridised products are colocalised in MNCs. Lastly, single‐cell reverse transcriptase‐polymerase chain reaction detected MR and 11β‐HSD2 mRNAs from cDNA libraries derived from single identified MNCs. These findings strongly suggest that MNCs in the SON and PVN are aldosterone‐sensitive neurones. |
format | Online Article Text |
id | pubmed-5019266 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-50192662016-09-23 Localisation of 11β‐Hydroxysteroid Dehydrogenase Type 2 in Mineralocorticoid Receptor Expressing Magnocellular Neurosecretory Neurones of the Rat Supraoptic and Paraventricular Nuclei Haque, M. Wilson, R. Sharma, K. Mills, N. J. Teruyama, R. J Neuroendocrinol Original Articles An accumulating body of evidence suggests that the activity of the mineralocorticoid, aldosterone, in the brain via the mineralocorticoid receptor (MR) plays an important role in the regulation of blood pressure. MR was recently found in vasopressin and oxytocin synthesising magnocellular neurosecretory cells (MNCs) in both the paraventricular (PVN) and supraoptic (SON) nuclei in the hypothalamus. Considering the physiological effects of these hormones, MR in these neurones may be an important site mediating the action of aldosterone in blood pressure regulation within the brain. However, aldosterone activation of MR in the hypothalamus remains controversial as a result of the high binding affinity of glucocorticoids to MR at substantially higher concentrations compared to aldosterone. In aldosterone‐sensitive epithelia, the enzyme 11β‐hydroxysteroid dehydrogenase type 2 (11β‐HSD2) prevents glucocorticoids from binding to MR by converting glucocorticoids into inactive metabolites. The present study aimed to determine whether 11β‐HSD2, which increases aldosterone selectivity, is expressed in MNCs. Specific 11β‐HSD2 immunoreactivity was found in the cytoplasm of the MNCs in both the SON and PVN. In addition, double‐fluorescence confocal microscopy demonstrated that MR‐immunoreactivity and 11β‐HSD2‐in situ hybridised products are colocalised in MNCs. Lastly, single‐cell reverse transcriptase‐polymerase chain reaction detected MR and 11β‐HSD2 mRNAs from cDNA libraries derived from single identified MNCs. These findings strongly suggest that MNCs in the SON and PVN are aldosterone‐sensitive neurones. John Wiley and Sons Inc. 2015-10-28 2015-11 /pmc/articles/PMC5019266/ /pubmed/26403275 http://dx.doi.org/10.1111/jne.12325 Text en © 2015 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles Haque, M. Wilson, R. Sharma, K. Mills, N. J. Teruyama, R. Localisation of 11β‐Hydroxysteroid Dehydrogenase Type 2 in Mineralocorticoid Receptor Expressing Magnocellular Neurosecretory Neurones of the Rat Supraoptic and Paraventricular Nuclei |
title | Localisation of 11β‐Hydroxysteroid Dehydrogenase Type 2 in Mineralocorticoid Receptor Expressing Magnocellular Neurosecretory Neurones of the Rat Supraoptic and Paraventricular Nuclei |
title_full | Localisation of 11β‐Hydroxysteroid Dehydrogenase Type 2 in Mineralocorticoid Receptor Expressing Magnocellular Neurosecretory Neurones of the Rat Supraoptic and Paraventricular Nuclei |
title_fullStr | Localisation of 11β‐Hydroxysteroid Dehydrogenase Type 2 in Mineralocorticoid Receptor Expressing Magnocellular Neurosecretory Neurones of the Rat Supraoptic and Paraventricular Nuclei |
title_full_unstemmed | Localisation of 11β‐Hydroxysteroid Dehydrogenase Type 2 in Mineralocorticoid Receptor Expressing Magnocellular Neurosecretory Neurones of the Rat Supraoptic and Paraventricular Nuclei |
title_short | Localisation of 11β‐Hydroxysteroid Dehydrogenase Type 2 in Mineralocorticoid Receptor Expressing Magnocellular Neurosecretory Neurones of the Rat Supraoptic and Paraventricular Nuclei |
title_sort | localisation of 11β‐hydroxysteroid dehydrogenase type 2 in mineralocorticoid receptor expressing magnocellular neurosecretory neurones of the rat supraoptic and paraventricular nuclei |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5019266/ https://www.ncbi.nlm.nih.gov/pubmed/26403275 http://dx.doi.org/10.1111/jne.12325 |
work_keys_str_mv | AT haquem localisationof11bhydroxysteroiddehydrogenasetype2inmineralocorticoidreceptorexpressingmagnocellularneurosecretoryneuronesoftheratsupraopticandparaventricularnuclei AT wilsonr localisationof11bhydroxysteroiddehydrogenasetype2inmineralocorticoidreceptorexpressingmagnocellularneurosecretoryneuronesoftheratsupraopticandparaventricularnuclei AT sharmak localisationof11bhydroxysteroiddehydrogenasetype2inmineralocorticoidreceptorexpressingmagnocellularneurosecretoryneuronesoftheratsupraopticandparaventricularnuclei AT millsnj localisationof11bhydroxysteroiddehydrogenasetype2inmineralocorticoidreceptorexpressingmagnocellularneurosecretoryneuronesoftheratsupraopticandparaventricularnuclei AT teruyamar localisationof11bhydroxysteroiddehydrogenasetype2inmineralocorticoidreceptorexpressingmagnocellularneurosecretoryneuronesoftheratsupraopticandparaventricularnuclei |