Cargando…

Joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification

A now common goal in medical research is to investigate the inter‐relationships between a repeatedly measured biomarker, measured with error, and the time to an event of interest. This form of question can be tackled with a joint longitudinal‐survival model, with the most common approach combining a...

Descripción completa

Detalles Bibliográficos
Autores principales: Crowther, Michael J., Andersson, Therese M.‐L, Lambert, Paul C., Abrams, Keith R., Humphreys, Keith
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5019272/
https://www.ncbi.nlm.nih.gov/pubmed/26514596
http://dx.doi.org/10.1002/sim.6779
_version_ 1782453026790834176
author Crowther, Michael J.
Andersson, Therese M.‐L
Lambert, Paul C.
Abrams, Keith R.
Humphreys, Keith
author_facet Crowther, Michael J.
Andersson, Therese M.‐L
Lambert, Paul C.
Abrams, Keith R.
Humphreys, Keith
author_sort Crowther, Michael J.
collection PubMed
description A now common goal in medical research is to investigate the inter‐relationships between a repeatedly measured biomarker, measured with error, and the time to an event of interest. This form of question can be tackled with a joint longitudinal‐survival model, with the most common approach combining a longitudinal mixed effects model with a proportional hazards survival model, where the models are linked through shared random effects. In this article, we look at incorporating delayed entry (left truncation), which has received relatively little attention. The extension to delayed entry requires a second set of numerical integration, beyond that required in a standard joint model. We therefore implement two sets of fully adaptive Gauss–Hermite quadrature with nested Gauss–Kronrod quadrature (to allow time‐dependent association structures), conducted simultaneously, to evaluate the likelihood. We evaluate fully adaptive quadrature compared with previously proposed non‐adaptive quadrature through a simulation study, showing substantial improvements, both in terms of minimising bias and reducing computation time. We further investigate, through simulation, the consequences of misspecifying the longitudinal trajectory and its impact on estimates of association. Our scenarios showed the current value association structure to be very robust, compared with the rate of change that we found to be highly sensitive showing that assuming a simpler trend when the truth is more complex can lead to substantial bias. With emphasis on flexible parametric approaches, we generalise previous models by proposing the use of polynomials or splines to capture the longitudinal trend and restricted cubic splines to model the baseline log hazard function. The methods are illustrated on a dataset of breast cancer patients, modelling mammographic density jointly with survival, where we show how to incorporate density measurements prior to the at‐risk period, to make use of all the available information. User‐friendly Stata software is provided. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
format Online
Article
Text
id pubmed-5019272
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-50192722016-09-23 Joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification Crowther, Michael J. Andersson, Therese M.‐L Lambert, Paul C. Abrams, Keith R. Humphreys, Keith Stat Med Special Issue Papers A now common goal in medical research is to investigate the inter‐relationships between a repeatedly measured biomarker, measured with error, and the time to an event of interest. This form of question can be tackled with a joint longitudinal‐survival model, with the most common approach combining a longitudinal mixed effects model with a proportional hazards survival model, where the models are linked through shared random effects. In this article, we look at incorporating delayed entry (left truncation), which has received relatively little attention. The extension to delayed entry requires a second set of numerical integration, beyond that required in a standard joint model. We therefore implement two sets of fully adaptive Gauss–Hermite quadrature with nested Gauss–Kronrod quadrature (to allow time‐dependent association structures), conducted simultaneously, to evaluate the likelihood. We evaluate fully adaptive quadrature compared with previously proposed non‐adaptive quadrature through a simulation study, showing substantial improvements, both in terms of minimising bias and reducing computation time. We further investigate, through simulation, the consequences of misspecifying the longitudinal trajectory and its impact on estimates of association. Our scenarios showed the current value association structure to be very robust, compared with the rate of change that we found to be highly sensitive showing that assuming a simpler trend when the truth is more complex can lead to substantial bias. With emphasis on flexible parametric approaches, we generalise previous models by proposing the use of polynomials or splines to capture the longitudinal trend and restricted cubic splines to model the baseline log hazard function. The methods are illustrated on a dataset of breast cancer patients, modelling mammographic density jointly with survival, where we show how to incorporate density measurements prior to the at‐risk period, to make use of all the available information. User‐friendly Stata software is provided. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. John Wiley and Sons Inc. 2015-10-29 2016-03-30 /pmc/articles/PMC5019272/ /pubmed/26514596 http://dx.doi.org/10.1002/sim.6779 Text en © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Special Issue Papers
Crowther, Michael J.
Andersson, Therese M.‐L
Lambert, Paul C.
Abrams, Keith R.
Humphreys, Keith
Joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification
title Joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification
title_full Joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification
title_fullStr Joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification
title_full_unstemmed Joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification
title_short Joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification
title_sort joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification
topic Special Issue Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5019272/
https://www.ncbi.nlm.nih.gov/pubmed/26514596
http://dx.doi.org/10.1002/sim.6779
work_keys_str_mv AT crowthermichaelj jointmodellingoflongitudinalandsurvivaldataincorporatingdelayedentryandanassessmentofmodelmisspecification
AT anderssonthereseml jointmodellingoflongitudinalandsurvivaldataincorporatingdelayedentryandanassessmentofmodelmisspecification
AT lambertpaulc jointmodellingoflongitudinalandsurvivaldataincorporatingdelayedentryandanassessmentofmodelmisspecification
AT abramskeithr jointmodellingoflongitudinalandsurvivaldataincorporatingdelayedentryandanassessmentofmodelmisspecification
AT humphreyskeith jointmodellingoflongitudinalandsurvivaldataincorporatingdelayedentryandanassessmentofmodelmisspecification