Cargando…
Characterization of Iranian nonaflatoxigenic strains of Aspergillus flavus based on microsatellite-primed PCR
Out of fifty-two Iranian nonaflatoxigenic strains of Aspergillus flavus,collected from various substrates (soil and kernel) and sources (peanut, corn and pistachio), fifteen representatives were selected according to their different geographical origins (six provinces: Guilan and Golestan, Ardebil,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shiraz University
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5019298/ https://www.ncbi.nlm.nih.gov/pubmed/27843995 |
Sumario: | Out of fifty-two Iranian nonaflatoxigenic strains of Aspergillus flavus,collected from various substrates (soil and kernel) and sources (peanut, corn and pistachio), fifteen representatives were selected according to their different geographical origins (six provinces: Guilan and Golestan, Ardebil, Fars, Kerman and Semnan) and vegetative compatibility groups (VCGs, IR1 to IR15) for microsatellite-primed PCR analysis. Two inter-simple sequence repeat (ISSR) primers AFMPP and AFM13 were used to determine polymorphism and the relationship among strain isolates. A. flavus isolates were identified by their morphologies and their identities were confirmed by PCR amplification using the specific primer pair ITS1 and ITS4. The results revealed variations in the percentages of polymorphisms. In the ISSR analysis, primers AFMPP and AFM13 generated a total of 18 and 23 amplicons among the fungal strains, out of which 12 (66.7%) and 22 (95.7%) were polymorphic, respectively. Cluster analysis of the ISSR data was carried out using 1 D DNA gel image analysis. The two dendrograms obtained through these markers showed six different clusterings of testing nonaflatoxigenic A. flavus L strains, but we noticed that some clusters were different in some cases. The microsatellite-primed PCR data revealed that the Iranian nonaflatoxigenic isolates of A. flavus were not clustered according to their origins and sources. This study is the first to characterize Iranian nonaflatoxigenic isolates of A. flavus using ISSR markers. |
---|