Cargando…
Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions
Diabetic nephropathy (DN), a common complication associated with type 1 and type 2 diabetes mellitus (DM), characterized by glomerular mesangial expansion, inflammation, accumulation of extracellular matrix (ECM) protein, and hypertrophy, is the major cause of end-stage renal disease (ESRD). Increas...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5019898/ https://www.ncbi.nlm.nih.gov/pubmed/27652271 http://dx.doi.org/10.1155/2016/3853242 |
_version_ | 1782453136658530304 |
---|---|
author | Li, Xiangjun Li, Chaoyuan Li, Xiaoxia Cui, Peihe Li, Qifeng Guo, Qiaoyan Han, Hongbo Liu, Shujun Sun, Guangdong |
author_facet | Li, Xiangjun Li, Chaoyuan Li, Xiaoxia Cui, Peihe Li, Qifeng Guo, Qiaoyan Han, Hongbo Liu, Shujun Sun, Guangdong |
author_sort | Li, Xiangjun |
collection | PubMed |
description | Diabetic nephropathy (DN), a common complication associated with type 1 and type 2 diabetes mellitus (DM), characterized by glomerular mesangial expansion, inflammation, accumulation of extracellular matrix (ECM) protein, and hypertrophy, is the major cause of end-stage renal disease (ESRD). Increasing evidence suggested that p21-dependent glomerular and mesangial cell (MC) hypertrophy play key roles in the pathogenesis of DN. Recently, posttranscriptional modifications (PTMs) have uncovered novel molecular mechanisms involved in DN. However, precise regulatory mechanism of histone lysine methylation (HKme) mediating p21 related hypertrophy associated with DN is not clear. We evaluated the roles of HKme and histone methyltransferase (HMT) SET7/9 in p21 gene expression in glomeruli of diabetic rats and in high glucose- (HG-) treated rat mesangial cells (RMCs). p21 gene expression was upregulated in diabetic rats glomeruli; chromatin immunoprecipitation (ChIP) assays showed decreased histone H3-lysine9-dimethylation (H3K9me2) accompanied with enhanced histone H3-lysine4-methylation (H3K4me1/3) and SET7/9 occupancies at the p21 promoter. HG-treated RMCs exhibited increased p21 mRNA, H3K4me level, SET7/9 recruitment, and inverse H3K9me, which were reversed by TGF-β1 antibody. These data uncovered key roles of H3Kme and SET7/9 responsible for p21 gene expression in vivo and in vitro under diabetic conditions and confirmed preventive effect of TGF-β1 antibody on DN. |
format | Online Article Text |
id | pubmed-5019898 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-50198982016-09-20 Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions Li, Xiangjun Li, Chaoyuan Li, Xiaoxia Cui, Peihe Li, Qifeng Guo, Qiaoyan Han, Hongbo Liu, Shujun Sun, Guangdong J Diabetes Res Research Article Diabetic nephropathy (DN), a common complication associated with type 1 and type 2 diabetes mellitus (DM), characterized by glomerular mesangial expansion, inflammation, accumulation of extracellular matrix (ECM) protein, and hypertrophy, is the major cause of end-stage renal disease (ESRD). Increasing evidence suggested that p21-dependent glomerular and mesangial cell (MC) hypertrophy play key roles in the pathogenesis of DN. Recently, posttranscriptional modifications (PTMs) have uncovered novel molecular mechanisms involved in DN. However, precise regulatory mechanism of histone lysine methylation (HKme) mediating p21 related hypertrophy associated with DN is not clear. We evaluated the roles of HKme and histone methyltransferase (HMT) SET7/9 in p21 gene expression in glomeruli of diabetic rats and in high glucose- (HG-) treated rat mesangial cells (RMCs). p21 gene expression was upregulated in diabetic rats glomeruli; chromatin immunoprecipitation (ChIP) assays showed decreased histone H3-lysine9-dimethylation (H3K9me2) accompanied with enhanced histone H3-lysine4-methylation (H3K4me1/3) and SET7/9 occupancies at the p21 promoter. HG-treated RMCs exhibited increased p21 mRNA, H3K4me level, SET7/9 recruitment, and inverse H3K9me, which were reversed by TGF-β1 antibody. These data uncovered key roles of H3Kme and SET7/9 responsible for p21 gene expression in vivo and in vitro under diabetic conditions and confirmed preventive effect of TGF-β1 antibody on DN. Hindawi Publishing Corporation 2016 2016-08-29 /pmc/articles/PMC5019898/ /pubmed/27652271 http://dx.doi.org/10.1155/2016/3853242 Text en Copyright © 2016 Xiangjun Li et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Li, Xiangjun Li, Chaoyuan Li, Xiaoxia Cui, Peihe Li, Qifeng Guo, Qiaoyan Han, Hongbo Liu, Shujun Sun, Guangdong Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions |
title | Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions |
title_full | Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions |
title_fullStr | Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions |
title_full_unstemmed | Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions |
title_short | Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions |
title_sort | involvement of histone lysine methylation in p21 gene expression in rat kidney in vivo and rat mesangial cells in vitro under diabetic conditions |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5019898/ https://www.ncbi.nlm.nih.gov/pubmed/27652271 http://dx.doi.org/10.1155/2016/3853242 |
work_keys_str_mv | AT lixiangjun involvementofhistonelysinemethylationinp21geneexpressioninratkidneyinvivoandratmesangialcellsinvitrounderdiabeticconditions AT lichaoyuan involvementofhistonelysinemethylationinp21geneexpressioninratkidneyinvivoandratmesangialcellsinvitrounderdiabeticconditions AT lixiaoxia involvementofhistonelysinemethylationinp21geneexpressioninratkidneyinvivoandratmesangialcellsinvitrounderdiabeticconditions AT cuipeihe involvementofhistonelysinemethylationinp21geneexpressioninratkidneyinvivoandratmesangialcellsinvitrounderdiabeticconditions AT liqifeng involvementofhistonelysinemethylationinp21geneexpressioninratkidneyinvivoandratmesangialcellsinvitrounderdiabeticconditions AT guoqiaoyan involvementofhistonelysinemethylationinp21geneexpressioninratkidneyinvivoandratmesangialcellsinvitrounderdiabeticconditions AT hanhongbo involvementofhistonelysinemethylationinp21geneexpressioninratkidneyinvivoandratmesangialcellsinvitrounderdiabeticconditions AT liushujun involvementofhistonelysinemethylationinp21geneexpressioninratkidneyinvivoandratmesangialcellsinvitrounderdiabeticconditions AT sunguangdong involvementofhistonelysinemethylationinp21geneexpressioninratkidneyinvivoandratmesangialcellsinvitrounderdiabeticconditions |