Cargando…
Kinematic and EMG Responses to Pelvis and Leg Assistance Force during Treadmill Walking in Children with Cerebral Palsy
Treadmill training has been used for improving locomotor function in children with cerebral palsy (CP), but the functional gains are relatively small, suggesting a need to improve current paradigms. The understanding of the kinematic and EMG responses to forces applied to the body of subjects during...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5019900/ https://www.ncbi.nlm.nih.gov/pubmed/27651955 http://dx.doi.org/10.1155/2016/5020348 |
_version_ | 1782453137113612288 |
---|---|
author | Wu, Ming Kim, Janis Arora, Pooja Gaebler-Spira, Deborah J. Zhang, Yunhui |
author_facet | Wu, Ming Kim, Janis Arora, Pooja Gaebler-Spira, Deborah J. Zhang, Yunhui |
author_sort | Wu, Ming |
collection | PubMed |
description | Treadmill training has been used for improving locomotor function in children with cerebral palsy (CP), but the functional gains are relatively small, suggesting a need to improve current paradigms. The understanding of the kinematic and EMG responses to forces applied to the body of subjects during treadmill walking is crucial for improving current paradigms. The objective of this study was to determine the kinematics and EMG responses to the pelvis and/or leg assistance force. Ten children with spastic CP were recruited to participate in this study. A controlled assistance force was applied to the pelvis and/or legs during stance and swing phase of gait through a custom designed robotic system during walking. Muscle activities and spatial-temporal gait parameters were measured at different loading conditions during walking. In addition, the spatial-temporal gait parameters during overground walking before and after treadmill training were also collected. Applying pelvis assistance improved step height and applying leg assistance improved step length during walking, but applying leg assistance also reduced muscle activation of ankle flexor during the swing phase of gait. In addition, step length and self-selected walking speed significantly improved after one session of treadmill training with combined pelvis and leg assistance. |
format | Online Article Text |
id | pubmed-5019900 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-50199002016-09-20 Kinematic and EMG Responses to Pelvis and Leg Assistance Force during Treadmill Walking in Children with Cerebral Palsy Wu, Ming Kim, Janis Arora, Pooja Gaebler-Spira, Deborah J. Zhang, Yunhui Neural Plast Research Article Treadmill training has been used for improving locomotor function in children with cerebral palsy (CP), but the functional gains are relatively small, suggesting a need to improve current paradigms. The understanding of the kinematic and EMG responses to forces applied to the body of subjects during treadmill walking is crucial for improving current paradigms. The objective of this study was to determine the kinematics and EMG responses to the pelvis and/or leg assistance force. Ten children with spastic CP were recruited to participate in this study. A controlled assistance force was applied to the pelvis and/or legs during stance and swing phase of gait through a custom designed robotic system during walking. Muscle activities and spatial-temporal gait parameters were measured at different loading conditions during walking. In addition, the spatial-temporal gait parameters during overground walking before and after treadmill training were also collected. Applying pelvis assistance improved step height and applying leg assistance improved step length during walking, but applying leg assistance also reduced muscle activation of ankle flexor during the swing phase of gait. In addition, step length and self-selected walking speed significantly improved after one session of treadmill training with combined pelvis and leg assistance. Hindawi Publishing Corporation 2016 2016-08-29 /pmc/articles/PMC5019900/ /pubmed/27651955 http://dx.doi.org/10.1155/2016/5020348 Text en Copyright © 2016 Ming Wu et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Wu, Ming Kim, Janis Arora, Pooja Gaebler-Spira, Deborah J. Zhang, Yunhui Kinematic and EMG Responses to Pelvis and Leg Assistance Force during Treadmill Walking in Children with Cerebral Palsy |
title | Kinematic and EMG Responses to Pelvis and Leg Assistance Force during Treadmill Walking in Children with Cerebral Palsy |
title_full | Kinematic and EMG Responses to Pelvis and Leg Assistance Force during Treadmill Walking in Children with Cerebral Palsy |
title_fullStr | Kinematic and EMG Responses to Pelvis and Leg Assistance Force during Treadmill Walking in Children with Cerebral Palsy |
title_full_unstemmed | Kinematic and EMG Responses to Pelvis and Leg Assistance Force during Treadmill Walking in Children with Cerebral Palsy |
title_short | Kinematic and EMG Responses to Pelvis and Leg Assistance Force during Treadmill Walking in Children with Cerebral Palsy |
title_sort | kinematic and emg responses to pelvis and leg assistance force during treadmill walking in children with cerebral palsy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5019900/ https://www.ncbi.nlm.nih.gov/pubmed/27651955 http://dx.doi.org/10.1155/2016/5020348 |
work_keys_str_mv | AT wuming kinematicandemgresponsestopelvisandlegassistanceforceduringtreadmillwalkinginchildrenwithcerebralpalsy AT kimjanis kinematicandemgresponsestopelvisandlegassistanceforceduringtreadmillwalkinginchildrenwithcerebralpalsy AT arorapooja kinematicandemgresponsestopelvisandlegassistanceforceduringtreadmillwalkinginchildrenwithcerebralpalsy AT gaeblerspiradeborahj kinematicandemgresponsestopelvisandlegassistanceforceduringtreadmillwalkinginchildrenwithcerebralpalsy AT zhangyunhui kinematicandemgresponsestopelvisandlegassistanceforceduringtreadmillwalkinginchildrenwithcerebralpalsy |