Cargando…

Pilot-scale spiral wound membrane assessment for THM precursor rejection from upland waters

The outcomes of a pilot-scale study of the rejection of trihalomethanes (THMs) precursors by commercial ultrafiltration/nanofiltration (UF/NF) spiral-wound membrane elements are presented based on a single surface water source in Scotland. The study revealed the expected trend of increased flux and...

Descripción completa

Detalles Bibliográficos
Autores principales: Golea, D., Sutherland, S., Jarvis, P., Judd, S. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5020326/
https://www.ncbi.nlm.nih.gov/pubmed/27695148
http://dx.doi.org/10.1080/01496395.2016.1162807
Descripción
Sumario:The outcomes of a pilot-scale study of the rejection of trihalomethanes (THMs) precursors by commercial ultrafiltration/nanofiltration (UF/NF) spiral-wound membrane elements are presented based on a single surface water source in Scotland. The study revealed the expected trend of increased flux and permeability with increasing pore size for the UF membranes; the NF membranes provided similar fluxes despite the lower nominal pore size. The dissolved organic carbon (DOC) passage decreased with decreasing molecular weight cut-off, with a less than one-third the passage recorded for the NF membranes than for the UF ones. The yield (weight % total THMs per DOC) varied between 2.5% and 8% across all membranes tested, in reasonable agreement with the literature, with the aromatic polyamide membrane providing both the lowest yield and lowest DOC passage. The proportion of the hydrophobic (HPO) fraction removed was found to increase with decreasing membrane selectivity (increasing pore size), and THM generation correlated closely (R (2) = 0.98) with the permeate HPO fractional concentration.