Cargando…

Involvement of Histamine and RhoA/ROCK in Penicillin Immediate Hypersensitivity Reactions

The mechanism of penicillin immediate hypersensitivity reactions has not been completely elucidated. These reactions are generally considered to be mediated by IgE, but penicillin-specific IgE could not be detected in most cases. This study demonstrated that penicillin was able to cause vascular hyp...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Jiayin, Yi, Yan, Li, Chunying, Zhang, Yushi, Wang, Lianmei, Zhao, Yong, Pan, Chen, Liang, Aihua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5020415/
https://www.ncbi.nlm.nih.gov/pubmed/27619816
http://dx.doi.org/10.1038/srep33192
Descripción
Sumario:The mechanism of penicillin immediate hypersensitivity reactions has not been completely elucidated. These reactions are generally considered to be mediated by IgE, but penicillin-specific IgE could not be detected in most cases. This study demonstrated that penicillin was able to cause vascular hyperpermeability in a mouse model mimicking clinical symptoms of penicillin immediate hypersensitivity reactions. The first exposure to penicillin also induced immediate edema and exudative reactions in ears and lungs of mice in a dose-dependent manner. Vasodilation was noted in microvessels in ears. These reactions were unlikely to be immune-mediated reactions, because no penicillin-specific IgE was produced. Furthermore, penicillin treatment directly elicited rapid histamine release. Penicillin also led to F-actin reorganization in human umbilical vein endothelial cells and increased the permeability of the endothelial monolayer. Activation of the RhoA/ROCK signaling pathway was observed in ears and lungs of mice and in endothelial cells after treatment with penicillin. Both an anti-histamine agent and a ROCK inhibitor attenuated penicillin immediate hypersensitivity reactions in mice. This study presents a novel mechanism of penicillin immediate hypersensitivity reactions and suggests a potential preventive approach against these reactions.