Cargando…
Protein secondary structure prediction using a small training set (compact model) combined with a Complex-valued neural network approach
BACKGROUND: Protein secondary structure prediction (SSP) has been an area of intense research interest. Despite advances in recent methods conducted on large datasets, the estimated upper limit accuracy is yet to be reached. Since the predictions of SSP methods are applied as input to higher-level s...
Autores principales: | Rashid, Shamima, Saraswathi, Saras, Kloczkowski, Andrzej, Sundaram, Suresh, Kolinski, Andrzej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5020447/ https://www.ncbi.nlm.nih.gov/pubmed/27618812 http://dx.doi.org/10.1186/s12859-016-1209-0 |
Ejemplares similares
-
Multi-class BCGA-ELM based classifier that identifies biomarkers associated with hallmarks of cancer
por: Sachnev, Vasily, et al.
Publicado: (2015) -
In Silico Modeling of Human α(2C)-Adrenoreceptor Interaction with Filamin-2
por: Pawlowski, Marcin, et al.
Publicado: (2014) -
Role of Resultant Dipole Moment in Mechanical Dissociation of Biological Complexes
por: Kouza, Maksim, et al.
Publicado: (2018) -
BioShell-Threading: versatile Monte Carlo package for protein 3D threading
por: Gniewek, Pawel, et al.
Publicado: (2014) -
Modeling of Protein Structural Flexibility and Large-Scale Dynamics: Coarse-Grained Simulations and Elastic Network Models
por: Kmiecik, Sebastian, et al.
Publicado: (2018)