Cargando…
An empirically based steady state friction law and implications for fault stability
Empirically based rate‐and‐state friction laws (RSFLs) have been proposed to model the dependence of friction forces with slip and time. The relevance of the RSFL for earthquake mechanics is that few constitutive parameters define critical conditions for fault stability (i.e., critical stiffness and...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021208/ https://www.ncbi.nlm.nih.gov/pubmed/27667875 http://dx.doi.org/10.1002/2016GL067881 |
_version_ | 1782453316743069696 |
---|---|
author | Spagnuolo, E. Nielsen, S. Violay, M. Di Toro, G. |
author_facet | Spagnuolo, E. Nielsen, S. Violay, M. Di Toro, G. |
author_sort | Spagnuolo, E. |
collection | PubMed |
description | Empirically based rate‐and‐state friction laws (RSFLs) have been proposed to model the dependence of friction forces with slip and time. The relevance of the RSFL for earthquake mechanics is that few constitutive parameters define critical conditions for fault stability (i.e., critical stiffness and frictional fault behavior). However, the RSFLs were determined from experiments conducted at subseismic slip rates (V < 1 cm/s), and their extrapolation to earthquake deformation conditions (V > 0.1 m/s) remains questionable on the basis of the experimental evidence of (1) large dynamic weakening and (2) activation of particular fault lubrication processes at seismic slip rates. Here we propose a modified RSFL (MFL) based on the review of a large published and unpublished data set of rock friction experiments performed with different testing machines. The MFL, valid at steady state conditions from subseismic to seismic slip rates (0.1 µm/s < V < 3 m/s), describes the initiation of a substantial velocity weakening in the 1–20 cm/s range resulting in a critical stiffness increase that creates a peak of potential instability in that velocity regime. The MFL leads to a new definition of fault frictional stability with implications for slip event styles and relevance for models of seismic rupture nucleation, propagation, and arrest. |
format | Online Article Text |
id | pubmed-5021208 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-50212082016-09-23 An empirically based steady state friction law and implications for fault stability Spagnuolo, E. Nielsen, S. Violay, M. Di Toro, G. Geophys Res Lett Research Letters Empirically based rate‐and‐state friction laws (RSFLs) have been proposed to model the dependence of friction forces with slip and time. The relevance of the RSFL for earthquake mechanics is that few constitutive parameters define critical conditions for fault stability (i.e., critical stiffness and frictional fault behavior). However, the RSFLs were determined from experiments conducted at subseismic slip rates (V < 1 cm/s), and their extrapolation to earthquake deformation conditions (V > 0.1 m/s) remains questionable on the basis of the experimental evidence of (1) large dynamic weakening and (2) activation of particular fault lubrication processes at seismic slip rates. Here we propose a modified RSFL (MFL) based on the review of a large published and unpublished data set of rock friction experiments performed with different testing machines. The MFL, valid at steady state conditions from subseismic to seismic slip rates (0.1 µm/s < V < 3 m/s), describes the initiation of a substantial velocity weakening in the 1–20 cm/s range resulting in a critical stiffness increase that creates a peak of potential instability in that velocity regime. The MFL leads to a new definition of fault frictional stability with implications for slip event styles and relevance for models of seismic rupture nucleation, propagation, and arrest. John Wiley and Sons Inc. 2016-04-14 2016-04-16 /pmc/articles/PMC5021208/ /pubmed/27667875 http://dx.doi.org/10.1002/2016GL067881 Text en ©2016. The Authors. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Letters Spagnuolo, E. Nielsen, S. Violay, M. Di Toro, G. An empirically based steady state friction law and implications for fault stability |
title | An empirically based steady state friction law and implications for fault stability |
title_full | An empirically based steady state friction law and implications for fault stability |
title_fullStr | An empirically based steady state friction law and implications for fault stability |
title_full_unstemmed | An empirically based steady state friction law and implications for fault stability |
title_short | An empirically based steady state friction law and implications for fault stability |
title_sort | empirically based steady state friction law and implications for fault stability |
topic | Research Letters |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021208/ https://www.ncbi.nlm.nih.gov/pubmed/27667875 http://dx.doi.org/10.1002/2016GL067881 |
work_keys_str_mv | AT spagnuoloe anempiricallybasedsteadystatefrictionlawandimplicationsforfaultstability AT nielsens anempiricallybasedsteadystatefrictionlawandimplicationsforfaultstability AT violaym anempiricallybasedsteadystatefrictionlawandimplicationsforfaultstability AT ditorog anempiricallybasedsteadystatefrictionlawandimplicationsforfaultstability AT spagnuoloe empiricallybasedsteadystatefrictionlawandimplicationsforfaultstability AT nielsens empiricallybasedsteadystatefrictionlawandimplicationsforfaultstability AT violaym empiricallybasedsteadystatefrictionlawandimplicationsforfaultstability AT ditorog empiricallybasedsteadystatefrictionlawandimplicationsforfaultstability |