Cargando…

The Antinociceptive Properties of the Corydalis yanhusuo Extract

Corydalis yanhusuo. W.T. extracts (YHS) are widely used for the treatment of pain and inflammation. There are a few studies that assessed the effects of YHS in pain assays; however, none of these studies has systematically compared its activities in the different pain animal modes namely: acute, inf...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lien, Zhang, Yan, Wang, Zhiwei, Gong, Nian, Kweon, Tae Dong, Vo, Benjamin, Wang, Chaoran, Zhang, Xiuli, Chung, Jae Yoon, Alachkar, Amal, Liang, Xinmiao, Luo, David Z., Civelli, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021270/
https://www.ncbi.nlm.nih.gov/pubmed/27622550
http://dx.doi.org/10.1371/journal.pone.0162875
Descripción
Sumario:Corydalis yanhusuo. W.T. extracts (YHS) are widely used for the treatment of pain and inflammation. There are a few studies that assessed the effects of YHS in pain assays; however, none of these studies has systematically compared its activities in the different pain animal modes namely: acute, inflammatory and chronic pain. Furthermore, little is known about the mechanism of YHS activity in these assays. The aim of this study was to systematically evaluate the antinociceptive properties of YHS by testing it in four standardized pain assays and to investigate its mechanism. YHS antinociceptive properties were analyzed in the tail flick, the formalin paw licking, the von Frey filament and the hot box assays after spinal nerve ligation, which monitors acute nociceptive, persistent inflammatory and chronic neuropathic pain, respectively. YHS pharmacological profile was determined by screening it against a battery of G-protein coupled receptors and its mechanism of action was studied using knock-out mice. Our study shows that YHS, at a non-sedative dose, increases the tail flick latency in the tail flick assay without resulting in development of tolerance. YHS also decreases paw licking time in the formalin assay. Further, YHS increases paw withdraw threshold and latency in the von Frey filament and the hot box assays, respectively. In vitro, YHS exhibits prominent dopamine receptor antagonistic properties. In dopamine D2 receptor knockout mice, its antinociceptive effects are attenuated in acute and neuropathic pain but not inflammatory pain assays. Our results therefore indicate that YHS effectively attenuates acute, inflammatory and neuropathic pain, without causing tolerance. The effects on acute and neuropathic pain, but not inflammatory pain, are at least partially mediated through dopamine D2 receptor antagonism. Since YHS is a dietary supplement commercially available in the United States, our data suggest that it might be a candidate for alternative pain treatment.