Cargando…

Estimation of passive and active properties in the human heart using 3D tagged MRI

Advances in medical imaging and image processing are paving the way for personalised cardiac biomechanical modelling. Models provide the capacity to relate kinematics to dynamics and—through patient-specific modelling—derived material parameters to underlying cardiac muscle pathologies. However, for...

Descripción completa

Detalles Bibliográficos
Autores principales: Asner, Liya, Hadjicharalambous, Myrianthi, Chabiniok, Radomir, Peresutti, Devis, Sammut, Eva, Wong, James, Carr-White, Gerald, Chowienczyk, Philip, Lee, Jack, King, Andrew, Smith, Nicolas, Razavi, Reza, Nordsletten, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021775/
https://www.ncbi.nlm.nih.gov/pubmed/26611908
http://dx.doi.org/10.1007/s10237-015-0748-z
_version_ 1782453389793165312
author Asner, Liya
Hadjicharalambous, Myrianthi
Chabiniok, Radomir
Peresutti, Devis
Sammut, Eva
Wong, James
Carr-White, Gerald
Chowienczyk, Philip
Lee, Jack
King, Andrew
Smith, Nicolas
Razavi, Reza
Nordsletten, David
author_facet Asner, Liya
Hadjicharalambous, Myrianthi
Chabiniok, Radomir
Peresutti, Devis
Sammut, Eva
Wong, James
Carr-White, Gerald
Chowienczyk, Philip
Lee, Jack
King, Andrew
Smith, Nicolas
Razavi, Reza
Nordsletten, David
author_sort Asner, Liya
collection PubMed
description Advances in medical imaging and image processing are paving the way for personalised cardiac biomechanical modelling. Models provide the capacity to relate kinematics to dynamics and—through patient-specific modelling—derived material parameters to underlying cardiac muscle pathologies. However, for clinical utility to be achieved, model-based analyses mandate robust model selection and parameterisation. In this paper, we introduce a patient-specific biomechanical model for the left ventricle aiming to balance model fidelity with parameter identifiability. Using non-invasive data and common clinical surrogates, we illustrate unique identifiability of passive and active parameters over the full cardiac cycle. Identifiability and accuracy of the estimates in the presence of controlled noise are verified with a number of in silico datasets. Unique parametrisation is then obtained for three datasets acquired in vivo. The model predictions show good agreement with the data extracted from the images providing a pipeline for personalised biomechanical analysis.
format Online
Article
Text
id pubmed-5021775
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-50217752016-09-27 Estimation of passive and active properties in the human heart using 3D tagged MRI Asner, Liya Hadjicharalambous, Myrianthi Chabiniok, Radomir Peresutti, Devis Sammut, Eva Wong, James Carr-White, Gerald Chowienczyk, Philip Lee, Jack King, Andrew Smith, Nicolas Razavi, Reza Nordsletten, David Biomech Model Mechanobiol Original Paper Advances in medical imaging and image processing are paving the way for personalised cardiac biomechanical modelling. Models provide the capacity to relate kinematics to dynamics and—through patient-specific modelling—derived material parameters to underlying cardiac muscle pathologies. However, for clinical utility to be achieved, model-based analyses mandate robust model selection and parameterisation. In this paper, we introduce a patient-specific biomechanical model for the left ventricle aiming to balance model fidelity with parameter identifiability. Using non-invasive data and common clinical surrogates, we illustrate unique identifiability of passive and active parameters over the full cardiac cycle. Identifiability and accuracy of the estimates in the presence of controlled noise are verified with a number of in silico datasets. Unique parametrisation is then obtained for three datasets acquired in vivo. The model predictions show good agreement with the data extracted from the images providing a pipeline for personalised biomechanical analysis. Springer Berlin Heidelberg 2015-11-26 2016 /pmc/articles/PMC5021775/ /pubmed/26611908 http://dx.doi.org/10.1007/s10237-015-0748-z Text en © The Author(s) 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Original Paper
Asner, Liya
Hadjicharalambous, Myrianthi
Chabiniok, Radomir
Peresutti, Devis
Sammut, Eva
Wong, James
Carr-White, Gerald
Chowienczyk, Philip
Lee, Jack
King, Andrew
Smith, Nicolas
Razavi, Reza
Nordsletten, David
Estimation of passive and active properties in the human heart using 3D tagged MRI
title Estimation of passive and active properties in the human heart using 3D tagged MRI
title_full Estimation of passive and active properties in the human heart using 3D tagged MRI
title_fullStr Estimation of passive and active properties in the human heart using 3D tagged MRI
title_full_unstemmed Estimation of passive and active properties in the human heart using 3D tagged MRI
title_short Estimation of passive and active properties in the human heart using 3D tagged MRI
title_sort estimation of passive and active properties in the human heart using 3d tagged mri
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021775/
https://www.ncbi.nlm.nih.gov/pubmed/26611908
http://dx.doi.org/10.1007/s10237-015-0748-z
work_keys_str_mv AT asnerliya estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri
AT hadjicharalambousmyrianthi estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri
AT chabiniokradomir estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri
AT peresuttidevis estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri
AT sammuteva estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri
AT wongjames estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri
AT carrwhitegerald estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri
AT chowienczykphilip estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri
AT leejack estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri
AT kingandrew estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri
AT smithnicolas estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri
AT razavireza estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri
AT nordslettendavid estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri