Cargando…
Estimation of passive and active properties in the human heart using 3D tagged MRI
Advances in medical imaging and image processing are paving the way for personalised cardiac biomechanical modelling. Models provide the capacity to relate kinematics to dynamics and—through patient-specific modelling—derived material parameters to underlying cardiac muscle pathologies. However, for...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021775/ https://www.ncbi.nlm.nih.gov/pubmed/26611908 http://dx.doi.org/10.1007/s10237-015-0748-z |
_version_ | 1782453389793165312 |
---|---|
author | Asner, Liya Hadjicharalambous, Myrianthi Chabiniok, Radomir Peresutti, Devis Sammut, Eva Wong, James Carr-White, Gerald Chowienczyk, Philip Lee, Jack King, Andrew Smith, Nicolas Razavi, Reza Nordsletten, David |
author_facet | Asner, Liya Hadjicharalambous, Myrianthi Chabiniok, Radomir Peresutti, Devis Sammut, Eva Wong, James Carr-White, Gerald Chowienczyk, Philip Lee, Jack King, Andrew Smith, Nicolas Razavi, Reza Nordsletten, David |
author_sort | Asner, Liya |
collection | PubMed |
description | Advances in medical imaging and image processing are paving the way for personalised cardiac biomechanical modelling. Models provide the capacity to relate kinematics to dynamics and—through patient-specific modelling—derived material parameters to underlying cardiac muscle pathologies. However, for clinical utility to be achieved, model-based analyses mandate robust model selection and parameterisation. In this paper, we introduce a patient-specific biomechanical model for the left ventricle aiming to balance model fidelity with parameter identifiability. Using non-invasive data and common clinical surrogates, we illustrate unique identifiability of passive and active parameters over the full cardiac cycle. Identifiability and accuracy of the estimates in the presence of controlled noise are verified with a number of in silico datasets. Unique parametrisation is then obtained for three datasets acquired in vivo. The model predictions show good agreement with the data extracted from the images providing a pipeline for personalised biomechanical analysis. |
format | Online Article Text |
id | pubmed-5021775 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-50217752016-09-27 Estimation of passive and active properties in the human heart using 3D tagged MRI Asner, Liya Hadjicharalambous, Myrianthi Chabiniok, Radomir Peresutti, Devis Sammut, Eva Wong, James Carr-White, Gerald Chowienczyk, Philip Lee, Jack King, Andrew Smith, Nicolas Razavi, Reza Nordsletten, David Biomech Model Mechanobiol Original Paper Advances in medical imaging and image processing are paving the way for personalised cardiac biomechanical modelling. Models provide the capacity to relate kinematics to dynamics and—through patient-specific modelling—derived material parameters to underlying cardiac muscle pathologies. However, for clinical utility to be achieved, model-based analyses mandate robust model selection and parameterisation. In this paper, we introduce a patient-specific biomechanical model for the left ventricle aiming to balance model fidelity with parameter identifiability. Using non-invasive data and common clinical surrogates, we illustrate unique identifiability of passive and active parameters over the full cardiac cycle. Identifiability and accuracy of the estimates in the presence of controlled noise are verified with a number of in silico datasets. Unique parametrisation is then obtained for three datasets acquired in vivo. The model predictions show good agreement with the data extracted from the images providing a pipeline for personalised biomechanical analysis. Springer Berlin Heidelberg 2015-11-26 2016 /pmc/articles/PMC5021775/ /pubmed/26611908 http://dx.doi.org/10.1007/s10237-015-0748-z Text en © The Author(s) 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Paper Asner, Liya Hadjicharalambous, Myrianthi Chabiniok, Radomir Peresutti, Devis Sammut, Eva Wong, James Carr-White, Gerald Chowienczyk, Philip Lee, Jack King, Andrew Smith, Nicolas Razavi, Reza Nordsletten, David Estimation of passive and active properties in the human heart using 3D tagged MRI |
title | Estimation of passive and active properties in the human heart using 3D tagged MRI |
title_full | Estimation of passive and active properties in the human heart using 3D tagged MRI |
title_fullStr | Estimation of passive and active properties in the human heart using 3D tagged MRI |
title_full_unstemmed | Estimation of passive and active properties in the human heart using 3D tagged MRI |
title_short | Estimation of passive and active properties in the human heart using 3D tagged MRI |
title_sort | estimation of passive and active properties in the human heart using 3d tagged mri |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021775/ https://www.ncbi.nlm.nih.gov/pubmed/26611908 http://dx.doi.org/10.1007/s10237-015-0748-z |
work_keys_str_mv | AT asnerliya estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri AT hadjicharalambousmyrianthi estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri AT chabiniokradomir estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri AT peresuttidevis estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri AT sammuteva estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri AT wongjames estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri AT carrwhitegerald estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri AT chowienczykphilip estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri AT leejack estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri AT kingandrew estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri AT smithnicolas estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri AT razavireza estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri AT nordslettendavid estimationofpassiveandactivepropertiesinthehumanheartusing3dtaggedmri |