Cargando…

Multivariate data validation for investigating primary HCMV infection in pregnancy

We reported data concerning the Gas Chromatography–Mass Spectrometry (GC–MS) based metabolomic analysis of amniotic fluid (AF) samples obtained from pregnant women infected with Human Cytomegalovirus (HCMV). These data support the publication “Primary HCMV Infection in Pregnancy from Classic Data to...

Descripción completa

Detalles Bibliográficos
Autores principales: Barberini, Luigi, Noto, Antonio, Saba, Luca, Palmas, Francesco, Fanos, Vassilios, Dessì, Angelica, Zavattoni, Maurizio, Fattuoni, Claudia, Mussap, Michele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021794/
https://www.ncbi.nlm.nih.gov/pubmed/27656676
http://dx.doi.org/10.1016/j.dib.2016.08.050
_version_ 1782453393682333696
author Barberini, Luigi
Noto, Antonio
Saba, Luca
Palmas, Francesco
Fanos, Vassilios
Dessì, Angelica
Zavattoni, Maurizio
Fattuoni, Claudia
Mussap, Michele
author_facet Barberini, Luigi
Noto, Antonio
Saba, Luca
Palmas, Francesco
Fanos, Vassilios
Dessì, Angelica
Zavattoni, Maurizio
Fattuoni, Claudia
Mussap, Michele
author_sort Barberini, Luigi
collection PubMed
description We reported data concerning the Gas Chromatography–Mass Spectrometry (GC–MS) based metabolomic analysis of amniotic fluid (AF) samples obtained from pregnant women infected with Human Cytomegalovirus (HCMV). These data support the publication “Primary HCMV Infection in Pregnancy from Classic Data towards Metabolomics: an Exploratory analysis” (C. Fattuoni, F. Palmas, A. Noto, L. Barberini, M. Mussap, et al., 2016) [2]. GC–MS and Multivariate analysis allow to recognize the molecular phenotype of HCMV infected fetuses (transmitters) and that of HCMV non-infected fetuses (non-transmitters); moreover, GC–MS and multivariate analysis allow to distinguish and to compare the molecular phenotype of these two groups with a control group consisting of AF samples obtained in HCMV non-infected pregnant women. The obtained data discriminate controls from transmitters as well as from non-transmitters; no statistically significant difference was found between transmitters and non-transmitters.
format Online
Article
Text
id pubmed-5021794
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-50217942016-09-21 Multivariate data validation for investigating primary HCMV infection in pregnancy Barberini, Luigi Noto, Antonio Saba, Luca Palmas, Francesco Fanos, Vassilios Dessì, Angelica Zavattoni, Maurizio Fattuoni, Claudia Mussap, Michele Data Brief Data Article We reported data concerning the Gas Chromatography–Mass Spectrometry (GC–MS) based metabolomic analysis of amniotic fluid (AF) samples obtained from pregnant women infected with Human Cytomegalovirus (HCMV). These data support the publication “Primary HCMV Infection in Pregnancy from Classic Data towards Metabolomics: an Exploratory analysis” (C. Fattuoni, F. Palmas, A. Noto, L. Barberini, M. Mussap, et al., 2016) [2]. GC–MS and Multivariate analysis allow to recognize the molecular phenotype of HCMV infected fetuses (transmitters) and that of HCMV non-infected fetuses (non-transmitters); moreover, GC–MS and multivariate analysis allow to distinguish and to compare the molecular phenotype of these two groups with a control group consisting of AF samples obtained in HCMV non-infected pregnant women. The obtained data discriminate controls from transmitters as well as from non-transmitters; no statistically significant difference was found between transmitters and non-transmitters. Elsevier 2016-08-31 /pmc/articles/PMC5021794/ /pubmed/27656676 http://dx.doi.org/10.1016/j.dib.2016.08.050 Text en © 2016 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Data Article
Barberini, Luigi
Noto, Antonio
Saba, Luca
Palmas, Francesco
Fanos, Vassilios
Dessì, Angelica
Zavattoni, Maurizio
Fattuoni, Claudia
Mussap, Michele
Multivariate data validation for investigating primary HCMV infection in pregnancy
title Multivariate data validation for investigating primary HCMV infection in pregnancy
title_full Multivariate data validation for investigating primary HCMV infection in pregnancy
title_fullStr Multivariate data validation for investigating primary HCMV infection in pregnancy
title_full_unstemmed Multivariate data validation for investigating primary HCMV infection in pregnancy
title_short Multivariate data validation for investigating primary HCMV infection in pregnancy
title_sort multivariate data validation for investigating primary hcmv infection in pregnancy
topic Data Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021794/
https://www.ncbi.nlm.nih.gov/pubmed/27656676
http://dx.doi.org/10.1016/j.dib.2016.08.050
work_keys_str_mv AT barberiniluigi multivariatedatavalidationforinvestigatingprimaryhcmvinfectioninpregnancy
AT notoantonio multivariatedatavalidationforinvestigatingprimaryhcmvinfectioninpregnancy
AT sabaluca multivariatedatavalidationforinvestigatingprimaryhcmvinfectioninpregnancy
AT palmasfrancesco multivariatedatavalidationforinvestigatingprimaryhcmvinfectioninpregnancy
AT fanosvassilios multivariatedatavalidationforinvestigatingprimaryhcmvinfectioninpregnancy
AT dessiangelica multivariatedatavalidationforinvestigatingprimaryhcmvinfectioninpregnancy
AT zavattonimaurizio multivariatedatavalidationforinvestigatingprimaryhcmvinfectioninpregnancy
AT fattuoniclaudia multivariatedatavalidationforinvestigatingprimaryhcmvinfectioninpregnancy
AT mussapmichele multivariatedatavalidationforinvestigatingprimaryhcmvinfectioninpregnancy