Cargando…
A Modified Brain MR Image Segmentation and Bias Field Estimation Model Based on Local and Global Information
Because of the poor radio frequency coil uniformity and gradient-driven eddy currents, there is much noise and intensity inhomogeneity (bias) in brain magnetic resonance (MR) image, and it severely affects the segmentation accuracy. Better segmentation results are difficult to achieve by traditional...
Autores principales: | Cong, Wang, Song, Jianhua, Luan, Kuan, Liang, Hong, Wang, Lei, Ma, Xingcheng, Li, Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021895/ https://www.ncbi.nlm.nih.gov/pubmed/27660649 http://dx.doi.org/10.1155/2016/9871529 |
Ejemplares similares
-
Localized FCM Clustering with Spatial Information for Medical Image Segmentation and Bias Field Estimation
por: Cui, Wenchao, et al.
Publicado: (2013) -
Brain Tissue Segmentation and Bias Field Correction of MR Image Based on Spatially Coherent FCM with Nonlocal Constraints
por: Song, Jianhua, et al.
Publicado: (2019) -
Segmentation of MR image using local and global region based geodesic model
por: Li, Xiuming, et al.
Publicado: (2015) -
An Active Contour Model for the Segmentation of Images with Intensity Inhomogeneities and Bias Field Estimation
por: Huang, Chencheng, et al.
Publicado: (2015) -
Validation of image segmentation by estimating rater bias and variance
por: Warfield, Simon K., et al.
Publicado: (2008)