Cargando…

Optical thermometry based on level anticrossing in silicon carbide

We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Al...

Descripción completa

Detalles Bibliográficos
Autores principales: Anisimov, A. N., Simin, D., Soltamov, V. A., Lebedev, S. P., Baranov, P. G., Astakhov, G. V., Dyakonov, V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5022017/
https://www.ncbi.nlm.nih.gov/pubmed/27624819
http://dx.doi.org/10.1038/srep33301
_version_ 1782453440177242112
author Anisimov, A. N.
Simin, D.
Soltamov, V. A.
Lebedev, S. P.
Baranov, P. G.
Astakhov, G. V.
Dyakonov, V.
author_facet Anisimov, A. N.
Simin, D.
Soltamov, V. A.
Lebedev, S. P.
Baranov, P. G.
Astakhov, G. V.
Dyakonov, V.
author_sort Anisimov, A. N.
collection PubMed
description We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of 100 mK/Hz(1/2) for a detection volume of approximately 10(−6) mm(3). In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center.
format Online
Article
Text
id pubmed-5022017
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-50220172016-09-20 Optical thermometry based on level anticrossing in silicon carbide Anisimov, A. N. Simin, D. Soltamov, V. A. Lebedev, S. P. Baranov, P. G. Astakhov, G. V. Dyakonov, V. Sci Rep Article We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of 100 mK/Hz(1/2) for a detection volume of approximately 10(−6) mm(3). In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center. Nature Publishing Group 2016-09-14 /pmc/articles/PMC5022017/ /pubmed/27624819 http://dx.doi.org/10.1038/srep33301 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Anisimov, A. N.
Simin, D.
Soltamov, V. A.
Lebedev, S. P.
Baranov, P. G.
Astakhov, G. V.
Dyakonov, V.
Optical thermometry based on level anticrossing in silicon carbide
title Optical thermometry based on level anticrossing in silicon carbide
title_full Optical thermometry based on level anticrossing in silicon carbide
title_fullStr Optical thermometry based on level anticrossing in silicon carbide
title_full_unstemmed Optical thermometry based on level anticrossing in silicon carbide
title_short Optical thermometry based on level anticrossing in silicon carbide
title_sort optical thermometry based on level anticrossing in silicon carbide
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5022017/
https://www.ncbi.nlm.nih.gov/pubmed/27624819
http://dx.doi.org/10.1038/srep33301
work_keys_str_mv AT anisimovan opticalthermometrybasedonlevelanticrossinginsiliconcarbide
AT simind opticalthermometrybasedonlevelanticrossinginsiliconcarbide
AT soltamovva opticalthermometrybasedonlevelanticrossinginsiliconcarbide
AT lebedevsp opticalthermometrybasedonlevelanticrossinginsiliconcarbide
AT baranovpg opticalthermometrybasedonlevelanticrossinginsiliconcarbide
AT astakhovgv opticalthermometrybasedonlevelanticrossinginsiliconcarbide
AT dyakonovv opticalthermometrybasedonlevelanticrossinginsiliconcarbide