Cargando…
Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments
Coping with scarcity of labeled data is a common problem in sound classification tasks. Approaches for classifying sounds are commonly based on supervised learning algorithms, which require labeled data which is often scarce and leads to models that do not generalize well. In this paper, we make an...
Autores principales: | Han, Wenjing, Coutinho, Eduardo, Ruan, Huabin, Li, Haifeng, Schuller, Björn, Yu, Xiaojie, Zhu, Xuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5023122/ https://www.ncbi.nlm.nih.gov/pubmed/27627768 http://dx.doi.org/10.1371/journal.pone.0162075 |
Ejemplares similares
-
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020) -
Active semi-supervised learning for biological data classification
por: Camargo, Guilherme, et al.
Publicado: (2020) -
Deep semi-supervised learning for brain tumor classification
por: Ge, Chenjie, et al.
Publicado: (2020) -
A review of semi-supervised learning for text classification
por: Duarte, José Marcio, et al.
Publicado: (2023) -
Semi-supervised learning /
Publicado: (2010)