Cargando…
MicroRNA-214 suppresses growth, migration and invasion through a novel target, high mobility group AT-hook 1, in human cervical and colorectal cancer cells
BACKGROUND: MicroRNA-214 (miR-214) has been shown to act as a tumour suppressor in human cervical and colorectal cancer cells. The aim of this study was to experimentally validate high mobility group AT-hook 1 as a novel target for miR-214-mediated suppression of growth and motility. METHODS: HMGA1...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5023773/ https://www.ncbi.nlm.nih.gov/pubmed/27537384 http://dx.doi.org/10.1038/bjc.2016.234 |
Sumario: | BACKGROUND: MicroRNA-214 (miR-214) has been shown to act as a tumour suppressor in human cervical and colorectal cancer cells. The aim of this study was to experimentally validate high mobility group AT-hook 1 as a novel target for miR-214-mediated suppression of growth and motility. METHODS: HMGA1 and miR-214 expression levels were estimated in cervical and colorectal clinical specimens using qPCR. HMGA1 3′ untranslated region luciferase assays were performed to validate HMGA1 as a target of miR-214. Effect of altering the expression of miR-214 or HMGA1 on proliferation, migration and invasion of human cervical and colorectal cancer cells was investigated. RESULTS: miR-214 expression was poor while that of HMGA1 was high in cervical and colorectal cancer tissues. miR-214-re-expression or HMGA1 downregulation inhibited proliferation, migration and invasion of cancer cells while miR-214 inhibition had opposite effects. miR-214 was demonstrated to bind to the wild-type 3′ untranslated region of HMGA1 but not with its mutant. CONCLUSIONS: Low expression of miR-214 concurrent with elevated levels of HMGA1 may contribute to cervical and colorectal cancer progression. miR-214-mediated regulation of HMGA1 is a novel mechanism for its tumour-suppressive actions in human cervical and colorectal cancer cells and opens up avenues for novel therapeutic strategies for these two cancers. |
---|