Cargando…
Direct Comparison of (19)F qNMR and (1)H qNMR by Characterizing Atorvastatin Calcium Content
Quantitative nuclear magnetic resonance (qNMR) is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR ((1)H qNMR) and only a few fluorine qNMR ((19)F qNMR) were reported. No research has been conducted to dire...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5023850/ https://www.ncbi.nlm.nih.gov/pubmed/27688925 http://dx.doi.org/10.1155/2016/7627823 |
Sumario: | Quantitative nuclear magnetic resonance (qNMR) is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR ((1)H qNMR) and only a few fluorine qNMR ((19)F qNMR) were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both (19)F and (1)H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that (19)F qNMR has similar precision and sensitivity to (1)H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from (19)F qNMR is that the analyte signal is with less or no interference from impurities. (19)F qNMR is an excellent approach to quantify fluorine-containing analytes. |
---|