Cargando…
In-hive Pesticide Exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States
This study measured part of the in-hive pesticide exposome by analyzing residues from live in-hive bees, stored pollen, and wax in migratory colonies over time and compared exposure to colony health. We summarized the pesticide burden using three different additive methods: (1) the hazard quotient (...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5024099/ https://www.ncbi.nlm.nih.gov/pubmed/27628343 http://dx.doi.org/10.1038/srep33207 |
Sumario: | This study measured part of the in-hive pesticide exposome by analyzing residues from live in-hive bees, stored pollen, and wax in migratory colonies over time and compared exposure to colony health. We summarized the pesticide burden using three different additive methods: (1) the hazard quotient (HQ), an estimate of pesticide exposure risk, (2) the total number of pesticide residues, and (3) the number of relevant residues. Despite being simplistic, these models attempt to summarize potential risk from multiple contaminations in real-world contexts. Colonies performing pollination services were subject to increased pesticide exposure compared to honey-production and holding yards. We found clear links between an increase in the total number of products in wax and colony mortality. In particular, we found that fungicides with particular modes of action increased disproportionally in wax within colonies that died. The occurrence of queen events, a significant risk factor for colony health and productivity, was positively associated with all three proxies of pesticide exposure. While our exposome summation models do not fully capture the complexities of pesticide exposure, they nonetheless help elucidate their risks to colony health. Implementing and improving such models can help identify potential pesticide risks, permitting preventative actions to improve pollinator health. |
---|