Cargando…
Superconductor to Mott insulator transition in YBa(2)Cu(3)O(7)/LaCaMnO(3) heterostructures
The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In pursuit of a new realization of the SIT by interfac...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5024130/ https://www.ncbi.nlm.nih.gov/pubmed/27627855 http://dx.doi.org/10.1038/srep33184 |
_version_ | 1782453751267721216 |
---|---|
author | Gray, B. A. Middey, S. Conti, G. Gray, A. X. Kuo, C.-T. Kaiser, A. M. Ueda, S. Kobayashi, K. Meyers, D. Kareev, M. Tung, I. C. Liu, Jian Fadley, C. S. Chakhalian, J. Freeland, J. W. |
author_facet | Gray, B. A. Middey, S. Conti, G. Gray, A. X. Kuo, C.-T. Kaiser, A. M. Ueda, S. Kobayashi, K. Meyers, D. Kareev, M. Tung, I. C. Liu, Jian Fadley, C. S. Chakhalian, J. Freeland, J. W. |
author_sort | Gray, B. A. |
collection | PubMed |
description | The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In pursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high T(c) superconductor YBa(2)Cu(3)O(7) (YBCO) and colossal magnetoresistance ferromagnet La(0.67)Ca(0.33)MnO(3) (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping in cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may respond to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Such deterministic control of T(c) by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates. |
format | Online Article Text |
id | pubmed-5024130 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-50241302016-09-20 Superconductor to Mott insulator transition in YBa(2)Cu(3)O(7)/LaCaMnO(3) heterostructures Gray, B. A. Middey, S. Conti, G. Gray, A. X. Kuo, C.-T. Kaiser, A. M. Ueda, S. Kobayashi, K. Meyers, D. Kareev, M. Tung, I. C. Liu, Jian Fadley, C. S. Chakhalian, J. Freeland, J. W. Sci Rep Article The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In pursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high T(c) superconductor YBa(2)Cu(3)O(7) (YBCO) and colossal magnetoresistance ferromagnet La(0.67)Ca(0.33)MnO(3) (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping in cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may respond to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Such deterministic control of T(c) by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates. Nature Publishing Group 2016-09-15 /pmc/articles/PMC5024130/ /pubmed/27627855 http://dx.doi.org/10.1038/srep33184 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Gray, B. A. Middey, S. Conti, G. Gray, A. X. Kuo, C.-T. Kaiser, A. M. Ueda, S. Kobayashi, K. Meyers, D. Kareev, M. Tung, I. C. Liu, Jian Fadley, C. S. Chakhalian, J. Freeland, J. W. Superconductor to Mott insulator transition in YBa(2)Cu(3)O(7)/LaCaMnO(3) heterostructures |
title | Superconductor to Mott insulator transition in YBa(2)Cu(3)O(7)/LaCaMnO(3) heterostructures |
title_full | Superconductor to Mott insulator transition in YBa(2)Cu(3)O(7)/LaCaMnO(3) heterostructures |
title_fullStr | Superconductor to Mott insulator transition in YBa(2)Cu(3)O(7)/LaCaMnO(3) heterostructures |
title_full_unstemmed | Superconductor to Mott insulator transition in YBa(2)Cu(3)O(7)/LaCaMnO(3) heterostructures |
title_short | Superconductor to Mott insulator transition in YBa(2)Cu(3)O(7)/LaCaMnO(3) heterostructures |
title_sort | superconductor to mott insulator transition in yba(2)cu(3)o(7)/lacamno(3) heterostructures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5024130/ https://www.ncbi.nlm.nih.gov/pubmed/27627855 http://dx.doi.org/10.1038/srep33184 |
work_keys_str_mv | AT grayba superconductortomottinsulatortransitioninyba2cu3o7lacamno3heterostructures AT middeys superconductortomottinsulatortransitioninyba2cu3o7lacamno3heterostructures AT contig superconductortomottinsulatortransitioninyba2cu3o7lacamno3heterostructures AT grayax superconductortomottinsulatortransitioninyba2cu3o7lacamno3heterostructures AT kuoct superconductortomottinsulatortransitioninyba2cu3o7lacamno3heterostructures AT kaiseram superconductortomottinsulatortransitioninyba2cu3o7lacamno3heterostructures AT uedas superconductortomottinsulatortransitioninyba2cu3o7lacamno3heterostructures AT kobayashik superconductortomottinsulatortransitioninyba2cu3o7lacamno3heterostructures AT meyersd superconductortomottinsulatortransitioninyba2cu3o7lacamno3heterostructures AT kareevm superconductortomottinsulatortransitioninyba2cu3o7lacamno3heterostructures AT tungic superconductortomottinsulatortransitioninyba2cu3o7lacamno3heterostructures AT liujian superconductortomottinsulatortransitioninyba2cu3o7lacamno3heterostructures AT fadleycs superconductortomottinsulatortransitioninyba2cu3o7lacamno3heterostructures AT chakhalianj superconductortomottinsulatortransitioninyba2cu3o7lacamno3heterostructures AT freelandjw superconductortomottinsulatortransitioninyba2cu3o7lacamno3heterostructures |