Cargando…
A Fully Automated Trial Selection Method for Optimization of Motor Imagery Based Brain-Computer Interface
Independent component analysis (ICA) as a promising spatial filtering method can separate motor-related independent components (MRICs) from the multichannel electroencephalogram (EEG) signals. However, the unpredictable burst interferences may significantly degrade the performance of ICA-based brain...
Autores principales: | Zhou, Bangyan, Wu, Xiaopei, Lv, Zhao, Zhang, Lei, Guo, Xiaojin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025076/ https://www.ncbi.nlm.nih.gov/pubmed/27631789 http://dx.doi.org/10.1371/journal.pone.0162657 |
Ejemplares similares
-
Optimization of Task Allocation for Collaborative Brain–Computer Interface Based on Motor Imagery
por: Gu, Bin, et al.
Publicado: (2021) -
Optimizing Motor Imagery Parameters for Robotic Arm Control by Brain-Computer Interface
por: Hayta, Ünal, et al.
Publicado: (2022) -
EEG datasets for motor imagery brain–computer interface
por: Cho, Hohyun, et al.
Publicado: (2017) -
Large-Scale Assessment of a Fully Automatic Co-Adaptive Motor Imagery-Based Brain Computer Interface
por: Acqualagna, Laura, et al.
Publicado: (2016) -
Vividness of Visual Imagery and Personality Impact Motor-Imagery Brain Computer Interfaces
por: Leeuwis, Nikki, et al.
Publicado: (2021)