Cargando…
Phase-Amplitude Coupling in Spontaneous Mouse Behavior
The level of activity of many animals including humans rises and falls with a period of ~ 24 hours. The intrinsic biological oscillator that gives rise to this circadian oscillation is driven by a molecular feedback loop with an approximately 24 hour cycle period and is influenced by the environment...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025157/ https://www.ncbi.nlm.nih.gov/pubmed/27631971 http://dx.doi.org/10.1371/journal.pone.0162262 |
Sumario: | The level of activity of many animals including humans rises and falls with a period of ~ 24 hours. The intrinsic biological oscillator that gives rise to this circadian oscillation is driven by a molecular feedback loop with an approximately 24 hour cycle period and is influenced by the environment, most notably the light:dark cycle. In addition to the circadian oscillations, behavior of many animals is influenced by multiple oscillations occurring at faster—ultradian—time scales. These ultradian oscillations are also thought to be driven by feedback loops. While many studies have focused on identifying such ultradian oscillations, less is known about how the ultradian behavioral oscillations interact with each other and with the circadian oscillation. Decoding the coupling among the various physiological oscillators may be important for understanding how they conspire together to regulate the normal activity levels, as well in disease states in which such rhythmic fluctuations in behavior may be disrupted. Here, we use a wavelet-based cross-frequency analysis to show that different oscillations identified in spontaneous mouse behavior are coupled such that the amplitude of oscillations occurring at higher frequencies are modulated by the phase of the slower oscillations. The patterns of these interactions are different among different individuals. Yet this variability is not random. Differences in the pattern of interactions are confined to a low dimensional subspace where different patterns of interactions form clusters. These clusters expose the differences among individuals—males and females are preferentially segregated into different clusters. These sex-specific features of spontaneous behavior were not apparent in the spectra. Thus, our methodology reveals novel aspects of the structure of spontaneous animal behavior that are not observable using conventional methodology. |
---|