Cargando…

Metabolomics reveals dose effects of low-dose chronic exposure to uranium in rats: identification of candidate biomarkers in urine samples

INTRODUCTION: Data are sparse about the potential health risks of chronic low-dose contamination of humans by uranium (natural or anthropogenic) in drinking water. Previous studies report some molecular imbalances but no clinical signs due to uranium intake. OBJECTIVES: In a proof-of-principle study...

Descripción completa

Detalles Bibliográficos
Autores principales: Grison, Stéphane, Favé, Gaëlle, Maillot, Matthieu, Manens, Line, Delissen, Olivia, Blanchardon, Éric, Dublineau, Isabelle, Aigueperse, Jocelyne, Bohand, Sandra, Martin, Jean-Charles, Souidi, Maâmar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025510/
https://www.ncbi.nlm.nih.gov/pubmed/27729830
http://dx.doi.org/10.1007/s11306-016-1092-8
Descripción
Sumario:INTRODUCTION: Data are sparse about the potential health risks of chronic low-dose contamination of humans by uranium (natural or anthropogenic) in drinking water. Previous studies report some molecular imbalances but no clinical signs due to uranium intake. OBJECTIVES: In a proof-of-principle study, we reported that metabolomics is an appropriate method for addressing this chronic low-dose exposure in a rat model (uranium dose: 40 mg L(−1); duration: 9 months, n = 10). In the present study, our aim was to investigate the dose–effect pattern and identify additional potential biomarkers in urine samples. METHODS: Compared to our previous protocol, we doubled the number of rats per group (n = 20), added additional sampling time points (3 and 6 months) and included several lower doses of natural uranium (doses used: 40, 1.5, 0.15 and 0.015 mg L(−1)). LC–MS metabolomics was performed on urine samples and statistical analyses were made with SIMCA-P+ and R packages. RESULTS: The data confirmed our previous results and showed that discrimination was both dose and time related. Uranium exposure was revealed in rats contaminated for 9 months at a dose as low as 0.15 mg L(−1). Eleven features, including the confidently identified N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide and 4-hydroxyphenylacetylglycine, discriminated control from contaminated rats with a specificity and a sensitivity ranging from 83 to 96 %, when combined into a composite score. CONCLUSION: These findings show promise for the elucidation of underlying radiotoxicologic mechanisms and the design of a diagnostic test to assess exposure in urine, in a dose range experimentally estimated to be above a threshold between 0.015 and 0.15 mg L(−1). ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-016-1092-8) contains supplementary material, which is available to authorized users.