Cargando…

Revisiting the global effect and inhibition of return

Saccades toward previously cued locations have longer latencies than saccades toward other locations, a phenomenon known as inhibition of return (IOR). Watanabe (Exp Brain Res 138:330–342. doi:10.1007/s002210100709, 2001) combined IOR with the global effect (where saccade landing points fall in betw...

Descripción completa

Detalles Bibliográficos
Autores principales: De Vries, Jelmer P., Van der Stigchel, Stefan, Hooge, Ignace T. C., Verstraten, Frans A. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025513/
https://www.ncbi.nlm.nih.gov/pubmed/27377069
http://dx.doi.org/10.1007/s00221-016-4702-9
Descripción
Sumario:Saccades toward previously cued locations have longer latencies than saccades toward other locations, a phenomenon known as inhibition of return (IOR). Watanabe (Exp Brain Res 138:330–342. doi:10.1007/s002210100709, 2001) combined IOR with the global effect (where saccade landing points fall in between neighboring objects) to investigate whether IOR can also have a spatial component. When one of two neighboring targets was cued, there was a clear bias away from the cued location. In a condition where both targets were cued, it appeared that the global effect magnitude was similar to the condition without any cues. However, as the latencies in the double cue condition were shorter compared to the no cue condition, it is still an open question whether these results are representative for IOR. Considering the double cue condition can provide valuable insight into the interaction of the mechanisms underlying the two phenomena, here, we revisit this condition in an adapted paradigm. Our paradigm does result in longer latencies for the cued locations, and we find that the magnitude of the global effect is reduced significantly. Unexpectedly, this holds even when only including saccades with the same latencies for both conditions. Thus, the increased latencies associated with IOR cannot directly explain the reduction in global effect. The global effect reduction can likely best be seen as either a result of short-term depression of exogenous visual signals or a result of IOR established at the center of gravity of cues. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00221-016-4702-9) contains supplementary material, which is available to authorized users.