Cargando…
Detection of Aβ plaque deposition in MR images based on pixel feature selection and class information in image level
BACKGROUND: Amyloid β-protein (Aβ) plaque deposition is an important prevention and treatment target for Alzheimer’s disease (AD). As a noninvasive, nonradioactive and highly cost-effective clinical imaging method, magnetic resonance imaging (MRI) is the perfect imaging technology for the clinical d...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025619/ https://www.ncbi.nlm.nih.gov/pubmed/27632977 http://dx.doi.org/10.1186/s12938-016-0222-x |
Sumario: | BACKGROUND: Amyloid β-protein (Aβ) plaque deposition is an important prevention and treatment target for Alzheimer’s disease (AD). As a noninvasive, nonradioactive and highly cost-effective clinical imaging method, magnetic resonance imaging (MRI) is the perfect imaging technology for the clinical diagnosis of AD, but it cannot display the plaque deposition directly. This paper resolves this problem based on pixel feature selection algorithms at the image level. METHODS AND RESULTS: Firstly, the brain region was segmented from mouse model brain MR images. Secondly, the pixels in the segmented brain region were extracted as a feature vector (features). Thirdly, feature selection was conducted on the extracted features, and the optimal feature subset was obtained. Fourthly, the various optimal feature subsets were obtained by repeating the same processing above. Fifthly, based on the optimal feature subsets, the final optimal feature subset was obtained by voting mechanism. Finally, using the final optimal selected features, the corresponding pixels on the MR images could be found and marked to show the information about Aβ plaque deposition. The MR images and brain histological image slices of twenty-two model mice were used in the experiments. Four feature selection algorithms were used on the MR images and six kinds of classification experiments are conducted, thereby choosing a pixel feature selection algorithm for further study. The experimental results showed that by using the pixel features selected by the algorithms in this paper, the best classification accuracy between early AD and control slides could be as high as 80 %. The selected and marked MR pixels could show information of Aβ plaque deposition without missing most of the Aβ plaque deposition compared with brain histological slice images. The hit rate is over than 90 %. CONCLUSIONS: According to the experimental results, the proposed detection algorithm of the Aβ plaque deposition based on MR pixel feature selection algorithm is effective. The proposed algorithm can detect the information of the Aβ plaque deposition on MR images and the information can be useful for improving the classification accuracy as assistant MR biomarker. Besides, these findings firstly show the feasibility of detection of the Aβ plaque deposition on MR images and provide reference method for interested relevant researchers in public. |
---|