Cargando…
Long-term exposure to microgravity impairs vestibulo-cardiovascular reflex
The vestibular system is known to have an important role in controlling blood pressure upon posture transition (vestibulo-cardiovascular reflex, VCR). However, under a different gravitational environment, the sensitivity of the vestibular system may be altered. Thus, the VCR may become less sensitiv...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025735/ https://www.ncbi.nlm.nih.gov/pubmed/27634181 http://dx.doi.org/10.1038/srep33405 |
Sumario: | The vestibular system is known to have an important role in controlling blood pressure upon posture transition (vestibulo-cardiovascular reflex, VCR). However, under a different gravitational environment, the sensitivity of the vestibular system may be altered. Thus, the VCR may become less sensitive after spaceflight because of orthostatic intolerance potentially induced by long-term exposure to microgravity. To test this hypothesis in humans, we investigated the ability of the VCR to maintain blood pressure upon head-up tilt before and after a 4–6 months stay on the International Space Station. To detect the functional state of the VCR, galvanic vestibular stimulation (GVS) was applied. As GVS transiently interrupts the vestibular-mediated pressor response, impaired VCR is detected when the head-up tilt-induced blood pressure response does not depend on GVS. During the first 20 s of head-up tilt, a transient blood pressure increase (11.9 ± 1.6 mmHg) was observed at pre-spaceflight but not at 1–4 days after return from spaceflight. The magnitude of VCR recovered to the pre-spaceflight levels within 2 months after return. These results indicate that long-term exposure to microgravity induces VCR impairment, which may be involved in a mechanism of spaceflight-induced orthostatic intolerance. |
---|